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ABSTRACT 

Personal mobility is moving towards the era of electrification. Adopting electric 

vehicles (EV) is widely regarded as an effective solution to energy crisis and air 

pollution. Many automakers have announced their roadmap to electrification in the next 

1-2 decades. At the same time, limited electric range and insufficient charging 

infrastructure are still obstacles to EV large-scale adoption. However, with the emerging 

technologies of ride-hailing, connected vehicles, and autonomous vehicles, these 

obstacles are being solved effectively, and the EV market penetration is expected to 

increase significantly. Among the many kinds of electric mobility, electric taxis and 

personal battery electric vehicles (BEV) especially are gaining increasing popularity and 

acceptance among customers. This dissertation studies the future challenges of electric 

taxis and personal BEVs. 

First, this dissertation examines the BEV feasibility from the spatial-temporal 

travel patterns of taxis. The BEV feasibility of a taxi is quantified as the percentage of 

occupied trips that can be completed by BEVs during a year. It is found that taxis with 

certain characteristics are more suitable for switching to BEVs, such as fewer daily shifts, 

shorter daily driving distance, and higher likelihood to dwell at the borough of 

Manhattan. Second, we model and simulate the operations of electric autonomous vehicle 

(EAV) taxis. EAV taxis are dispatched by the optimization-based model and the neural 

network-based model. The neural network dispatch model is able to learn the optimal 

dispatch strategies and runs much faster. The EAV taxis dispatched by the neural 

network-based model can improve operational efficiency in term of less empty travel 

distance and smaller fleet size. Third, this dissertation proposes a cumulative prospect 
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theory (CPT) based modeling framework to describe charging behavior of BEV drivers. 

A BEV mass-market scenario is constructed using 2017 National Household Travel 

Survey data. By applying the CPT-based charging behavior model, we examine the 

battery state-of-charge when drivers decide to charge their vehicles, charging timing and 

locations, and charging power demand profiles under the mass-market scenario. In 

addition, sensitivity analyses with respect to drivers’ risk attitude and public charger 

network coverage are conducted. 
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CHAPTER 1.    INTRODUCTION 

1.1. Background 

1.1.1. Electric Vehicles 

Electric vehicle is a kind of vehicle technology that uses electric motors for 

propulsion. Unlike conventional gasoline vehicles on which a fuel tank is installed, electric 

vehicles are powered by electricity that is stored in the onboard battery packs. This type of 

electric vehicles are also called pure electric vehicles or battery electric vehicles. The earliest 

EV came into existence in the mid-19th century, but in the past 100 years of automotive 

history, the internal combustion engines have been playing a dominant role in vehicle 

propulsion. In the 21st century, with the rise of environmental concerns and technological 

advancements in batteries, renewable energy, and vehicle powertrains, electric vehicles saw a 

resurgence and have been developing very fast (Neubauer et al., 2012). 

Electric vehicles hold many advantages over conventional gasoline vehicles. First, 

electrified transportation will reduce the dependency on fossil fuels. Transportation is the one 

of the major sectors that consumes a large amount of fossil fuels every year and emits 

considerable greenhouse gas (GHG) emissions and air pollution (Ajanovic, 2015). Electric 

vehicles, by contrast, are powered by electricity that has more renewable power sources, such 

as hydraulic, nuclear, biomass, and wind (Raugei et al., 2018). In addition, the process of 

electricity consumption has zero emission. Second, EVs have simpler body structure and 

mechanism, thus making vehicle design, manufacture, and maintenance in easier ways 

(Bradley and Frank, 2009). Take Tesla Model 3, a popular EV model, as an example. The 

wheels are powered by the motors that are placed by the side of the wheels, so the complex 

transmission mechanism can be removed. The combustion engine is also eliminated and the 
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space under the hood is used as luggage compartment. Third, lower use cost. Although the 

start price of EVs is more expensive than gasoline cars due to the pricey battery packs, the 

cost of electricity is much cheaper than gasoline for driving the same distance. The lower use 

cost will attract more people to switch to EVs. When batteries become cheaper, the cost 

advantage of EVs will be even larger (Cano et al., 2018). 

Due to the benefits of EVs, governments and auto manufacturers are taking serious 

steps to promote the adoption of EVs. Many countries give subsidies to personal EV buyers 

and public transit, such as electric taxis, electric buses, and electric delivery trucks (Palmer et 

al., 2018). New York City, Hong Kong, and Shenzhen, China are deploying electric vehicles 

for taxis (Yang et al., 2018). A large amount of electric buses have been hitting road in 

Norway for years (Bjerkan et al., 2016). Major automakers also announced their road map 

towards electrification. For example, Volvo aims at “fully electric” in the next 1-2 decades 

(Lambert, 2018). General Motors decided that their Cadillac brand will become the leading 

EV brand (Hawkins, 2019). This American largest automaker also took joint efforts with 

Ford and Nissan into EV research and development, hoping to create further competition for 

Tesla (Nolan, 2019). Zhang et al. (2017) forecasted that in the near future EV will be widely 

accepted and used for both public transit and personal travel. 

However, electric vehicles are confronted with some obstacles. The first obstacle is 

the electric range limitation. A typical gasoline vehicle has 400~500 miles range on a full 

tank. The electric range of most EV models is much shorter due to the limitation of battery 

packs. The most-recent National Household Travel Survey (U.S. DOT, FHWA, 2017) 

conducted across the U.S. revealed that most EV customers are driving EVs of less than 100-

mile range. Drivers who have long daily commute distance may not believe switching to EVs 
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is a feasible option. Second, charging technology and infrastructure. Refueling a gasoline 

vehicle takes only a few minutes and gas stations are located almost everywhere. However, 

charging EVs could take much longer time. The Level-1 chargers of less than 10 kW are 

currently the most popular chargers (SAE, 2016) and could take an entire night to fully 

charge an EV. The EV fast charging technology is still being developed and has not gained 

wide adoption due to safety concerns and potential burden to the power grid (Angelov et al., 

2018). Moreover, charging infrastructure is far from enough to support the use of EVs at the 

current stage. Building charging stations is slow because EV market penetration is minimal. 

Drivers are not exposed to charging infrastructure very often, so they become more reluctant 

to switch to EVs. This is called the “chicken-and-egg” problem of electric mobility (Schüßler 

and Bogenberger, 2015). With the advances in batteries, fast charging, and wireless charging, 

range anxiety and charging inconvenience are believed to be relieved. 

The obstacles to EV adoption force people to come up with new solutions. Providing 

electric mobility services is one of the most effective methods to promote the use of EVs. 

Instead of encouraging people to own electric vehicles, mobility services using EVs can also 

satisfy people’s travel demand, such as electric taxis and ride-hailing EVs. On the other hand, 

good charging service is the core for EV owners. Understanding the charging behavior of EV 

drivers will help provide better charging service to them. 

1.1.2. Ride-hailing and Autonomous Vehicles 

Using electric vehicles for mobility services becomes even more promising in recent 

years as the technology improvements of ride-hailing and autonomous vehicles start to 

accelerate. Ride-hailing platform connects passengers and local drivers who use their 

personal vehicles. Passengers request a ride-hailing vehicle through a smartphone app. The 

ride-hailing platform will assign a nearby driver to pick up the passengers. The information 
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of both passengers and vehicles are available to the platform, thus the travel demand of 

passengers can be better satisfied (e.g. shorter waiting time) and the efficiency of vehicle 

operations could improve (e.g. shorter cruising distance). When drivers use their personal 

EVs, the ride-hailing platform that keeps track of the real-time vehicle GPS can provide 

location-based service to the drivers, such as charging stations and idle chargers within the 

remaining range (Tian et al., 2016). The range anxiety of EV drivers could be relieved. On 

the side of passengers, their acceptance to EVs will also increase with more exposure to EV 

ride-hailing. A study showed that people with experience of using electric mobility services 

rate usefulness of EVs higher. Also, these people have stronger intention of buying EVs 

(Schlüter and Weyer, 2019). 

Autonomous vehicle technology develops rapidly in recent years with the advances in 

artificial intelligence, robotics, and high-performance computing. Autonomous vehicles have 

the ability to drive through sensing and intelligence techniques residing in the vehicle with no 

external assistance from humans (Mahmassani, 2016). Autonomous vehicles are often 

discussed with connected vehicle systems, a technology that enables AVs to communicate 

with a background management center, other vehicles, and transportation infrastructure. For 

example, an electric AV can exchange information, e.g. locations and battery SOC, with 

charging stations, thus vehicle charging can be scheduled in advance and multiple charging 

sessions can be coordinated at the system-wide level (Ma et al., 2018). Autonomous vehicle 

technology will greatly improve the driving experience of EVs. A study showed that 

autonomous vehicles may increase the market share of BEVs (Lin and Xie, 2018). The 

industry has realized this potential and started to demonstrate the business strategy of electric 

and autonomous vehicles. Tesla is the pioneer who puts electric vehicles with the automated 
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driving function called Autopilot into market (Tesla, 2019). General Motors is testing the AV 

hardware and software on the Chevrolet Bolt EVs (Lambert, 2018). Waymo reinvented the 

Jaguar E-pace EV to an autonomous car and will use this EAV model for their ride-hailing 

service (Hawkins, 2018). 

1.1.3. Future Electric Mobility 

Personal mobility in the future will be reshaped by electric vehicles combined with 

other mobility technologies. In addition to private electric vehicles, various means of 

transportation using EVs have been studied or already implemented in practice. Taxis are 

usually pioneers that adopt new technology to improve its service. Jung et al. (2014) studied 

an electric taxi system and explored the effects of EV taxi fleet’s operations on the charging 

system. They suggested that EV taxis can be a viable option to tackle the range limitation 

problem. Tian et al. (2016) collected EV taxi data in Shenzhen, China including the taxi real-

time GPS trajectories and historical charging events. These data helped them build a real-

time charging station recommendation system for EV taxis. Electric car-sharing is another 

emerging mobility service. The EV car-sharing services that people can already use include 

Daimler AG’s Car2go, the EvCard in Shanghai, China, and the Autolib’ in France 

(Wikipedia, 2019). The research in this field focused on the system design and the 

optimization methods for EV-sharing operations. For example, Boyacı et al. (2015) 

developed an optimization framework for planning an one-way EV car-sharing system, and 

Bruglieri et al. (2018) optimized the relocation of shared electric vehicles. In addition to EV 

sharing, there are also studies examining ride-hailing that uses electric vehicles to satisfy 

passengers’ travel demand, though only a few at this moment (Jenn et al., 2018). 

Electric vehicles alone may not fully satisfy people’s transportation need and reduce 

traffic congestion. Some studies have focused on the assistance of AV technology to the 
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electric mobility services. Chen et al. (2016) conducted an agent-based simulation for a fleet 

of shared EAVs operating in Austin, Texas. Farhan and Chen (2018) expanded this research 

to EAV carpool. They revealed that EAV carpool can reduce fleet size and the number of 

charging stations significantly compared to the traditional ride-hailing service. Kang et al. 

(2017) also studied an EAV sharing system using an optimization framework. Iacobucci et 

al. (2018) modeled a one-way car sharing service using EAVs in Tokyo, Japan. In addition to 

EAV car-sharing, Jäger et al. (2017) focused on an EAV on-demand mobility system and 

simulated the vehicle operations. 

1.2. Problem Statement 

The challenges confronted with future personal electric mobility are three folds. First, 

can electric vehicles satisfy people’s current transportation demand? How do electric taxis 

reshape the current gasoline taxi service? Second, with the introduction of autonomous 

vehicle technology, how can we dispatch EAV taxis in better and smarter ways? Third, 

electric vehicles will be owned by more and more people in the coming future. How do we 

understand their charging behavior, so as to provide guidance to BEV use, charging 

infrastructure planning, and power grid capacity expansion? The following three sections will 

describe these problems in detail. 

1.2.1. Feasibility of BEV Taxis 

The first studied problem in this dissertation is the analysis of BEV taxi feasibility 

based on the travel activities of current gasoline taxis. BEV feasibility research typically 

discovers travel patterns from the travel data collected from vehicles for a period of time. The 

most frequently used indicator that infers a vehicle’s suitability for BEVs is daily vehicle 

miles traveled, as seen in the BEV studies for Atlanta, USA (Pearre et al., 2011), Seattle, 

USA (Khan and Kockelman, 2012), Sydney, Australia (Greaves et al., 2014). For example, in 
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Atlanta the daily driving distance of 9% of sampled vehicles never exceeded 100 miles 

during data collection, as revealed by the driving data collected from 484 private gasoline 

cars over a year. This indicates that the daily driving needs of 9% of the sampled vehicles 

could be fulfilled by BEVs with a 100-mile range (Pearre et al., 2011). Other than DVMT, 

Dong and Lin (2014) quantified BEV feasibility as the probability that the ratio of travel 

distance between two charges to the battery range remains within a certain level. This 

research found out that about 10% of the sampled private car drivers in Seattle needed to 

make adjustment to less than 0.5% of travel days if they were comfortable with using up the 

range of 76 miles (i.e. representative of a Nissan Leaf 2012 model).  

These studies focused on the BEV feasibility of private vehicles. Currently, there is 

little research into the BEV feasibility of taxis. Taxis have its own distinct characteristics in 

terms of long driving time and distance, shared use, and dwell patterns. A typical yellow taxi 

in New York City is operated by 3 drivers and travels 70,000 miles annually, and the average 

shift lasts for 9.5 hours (NYC TLC, 2014; NYC TLC, 2016). The data collected from taxis in 

other cities of China revealed long daily driving distances that are likely to exceed BEV 

range, such as in Beijing (Li et al., 2016), Shanghai (Luo et al., 2017), and Shenzhen (Nie, 

2017). In terms of dwell patterns, Cai et al. (2014) said that approximately 80% of the 

studied taxis in Beijing had average parking time of at least 5 hours per day, and Bischoff et 

al. (2015) found that the taxis in Berlin, Germany were in favor of waiting for customers at 

airports for several hours (Bischoff et al., 2015). In only a few studies on the BEV feasibility 

of taxis, the BEV feasibility was examined from different perspectives, including 

environmental benefits (Yang et al., 2016), energy consumption (Zou et al., 2016), benefit-
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to-cost ratio (Baek et al., 2016), daily driving distance (Chrysostomou et al., 2016), and 

electrification rate of vehicle miles traveled (Li et al., 2017). 

This dissertation aims at examining the electric taxi feasibility from a different point 

of view based on taxis’ spatial-temporal travel patterns. The specific research questions we 

want to answer are as follows. 

(a) How to quantify the BEV feasibility of taxis? 

(b) What are the travel patterns that make taxis more suitable for switching to BEVs? 

In particular, taxis’ spatial-temporal travel patterns in terms of driver-shift, travel demand, 

and dwelling are extracted from the taxi trip data. 

(c) How to expand charging infrastructure coverage to improve BEV taxi feasibility? 

1.2.2. EAV Taxi Dispatch 

Electric and autonomous taxis have significant advantages over current taxis and ride-

hailing taxis. Adopting EAVs for various kinds of mobility services have been discussed in a 

few literatures. Chen et al. (2016) simulated a fleet of shared EAVs that follow agent-based 

rules of driving and charging. It was found that one shared EAV is able to replace 3.7–6.8 

private vehicles. Kang et al. (2017) designed an EAV sharing system and presented an 

optimization framework to determine the fleet size, charging infrastructure, vehicle 

assignment, and service fee. Jäger et al. (2017) focused on the agent-based simulation 

approach for a shared EAV on-demand mobility system, and found that a shared EAV fleet is 

able to provide both high service level and vehicle utilization. Iacobucci et al. (2018) 

modeled the operations of EAVs in the one-way car sharing service in Tokyo, Japan. This 

study revealed that the EAV car sharing can provide the same level of transport service as 

private cars, while the fleet size can reduce by 86%-90%. 
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The above studies all focused on the high operational efficiency of EAVs in the 

shared mobility services. The core of high efficiency is vehicle dispatch. Various methods 

have been used to study the vehicle dispatch problems of mobility services. The first and 

simplest one is the nearest vehicle dispatch method, that is, dispatching the vehicle that is 

geographically the nearest to a customer (Liao, 2003; Jung and Jayakrishnan, 2014; Hyland 

and Mahmassani, 2018). Dispatching the nearest vehicle is simple and it is often used as the 

base scenario to compare with other complex models. Second, queueing theory with the 

principle of first-come-first-served. The first customer that joins the waiting list will be 

picked up first (Zhang and Pavone, 2016; Jäger et al., 2017). Third, optimization models with 

different objectives were formulated to obtain optimal dispatch solutions. Qu et al. (2014) 

built a recommender system that provides taxi drivers with optimal driving route to 

maximize driver profits. Similarly, Sheppard et al. (2017) aimed at maximizing the profits of 

an EAV fleet, and Lu et al. (2018) wanted to minimize the total operating cost of a taxi fleet 

that serves advance reservations. Miao et al. (2016) focused on reducing taxi idle travel 

distance while maintaining service quality. Ma et al. (2017) designed an AV sharing and 

reservation model that optimally schedules AVs to serve the maximum number of customers. 

The AV taxi dispatch strategies in Hyland and Mahmassani (2018) were to minimize the total 

pickup distance when multiple requests enter the system. Machine learning is the fourth and 

emerging method to dispatch vehicles, especially reinforcement learning. Wen et al. (2017) 

proposed a reinforcement learning approach that adopts a deep Q-network to adaptively 

move idle vehicles to high-demand areas in a shared on-demand mobility system. Xu et al. 

(2018) also used reinforcement learning to solve a large-scale vehicle dispatch problem 

confronted by the ride-hailing company DiDi. 
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In this dissertation, we will study the potential of replacing current taxis with EAVs, 

especially the dispatch problems of EAV taxis. To be more specific, the following problems 

will be explored. 

 (a) What are the dispatch strategies for EAV taxis? A desired dispatch strategy 

should effectively reduce customer waiting time while keeping high operational efficiency of 

EAV taxis. In this research, we apply machine learning techniques to dispatch EAVs in a fast 

and efficient way.  

(b) How to design a simulation framework for the operations of EAV taxis? The 

simulation framework should facilitate the evaluation of different dispatch models in terms of 

improving customer service and operational efficiency. 

1.2.3. Charging Behavior of Personal BEV Drivers 

The third problem is to model BEV drivers’ charging behavior, such as the SOC 

when charging occurs, and choices of charging time and location (home, workplace, or 

public). Understanding the charging behavior will provide guidance to BEV use, charging 

infrastructure planning, and power grid capacity expansion. 

In previous research, the charging decisions of electric vehicle drivers have been 

modeled using simple and deterministic rules. For example, charging only occurs at home 

(Kang and Recker, 2009; Darabi and Ferdowsi, 2011; Kongthong and Dechanupapritta, 

2014), drivers decided to charge only if the benefit of charging is larger than the cost (Dong 

and Lin, 2012), and BEV taxi drivers would not charge vehicles until the SOC drops below a 

certain level (Hu et al., 2018; Yang et al., 2016). These models may hold true in the EV early 

adopter stage, but do not necessarily reflect realistic charging behaviors because it can be 

influenced by various factors. 
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Some studies took a step further and introduced random utility theory (RUT) to 

model BEV driver charging decisions under uncertain conditions and randomness. Daina et 

al. (2017) developed a joint random utility model of charging and activity-travel timing 

choices that considers various utilities across individuals. To incorporate heterogeneity 

among decision-makers, mixed logit choice models with random coefficients were developed 

to describe different charging behaviors, such as whether to charge at the end of each trip 

(Zoepf et al., 2013), fast charging station choices (Sun et al., 2016), and charge timing 

choices (Langbroek et al., 2017). RUT assumes that people are rational decision-makers and 

maximize utility relative to their choices. However, the rational decision-maker assumption 

has long been challenged by Kahneman and Tversky (1979), Durbach and Stewart (2012), 

and Ilin and Rogova (2017). People’s irrational behaviors of travelling have been observed 

and studied, such as departure time choice (Mahmassani and Chang, 1986; Schwanen and 

Ettema, 2009) and route choice (Zhou et al., 2014). 

Therefore, we need to consider the limited rationality when drivers make charging 

decisions. The cumulative prospect theory, proposed by Kahneman and Tversky (1979) and 

improved by Tversky and Kahneman (1992), describes the extent of decision-makers’ 

attitudes and preference toward risk. CPT has found success in many transportation research 

fields to describe people’s limited rationality and risk attitudes when making decisions., for 

example, route choice (Avineri and Bovy, 2008; de Luca and Di Pace, 2015; Gao et al., 

2010; Wang and Xu, 2011; Xu et al., 2011; Yang and Jiang, 2014; Zhou et al., 2014), 

commuter departure time choice (Senbil and Kitamura, 2004; Schwanen and Ettema, 2009), 

public-transport users’ mode choice at transfer stations (Ceder et al., 2013), use of the high-



www.manaraa.com

12 

occupancy-vehicle lane (Chow et al., 2010), classification of the risk attitude of travelers 

(Yang et al., 2015), and congestion pricing (Liu et al., 2010). 

Charging behavior of BEV drivers is in accordance with the rationale of CPT. When 

people drive BEVs, there are no significant perceivable gains if the trip distance falls below 

the electric range, but if the distance unexpectedly exceeds the range and the driver is caught 

on the road or forced to detour to reach a public charger, the losses are perceivably large. In 

addition, BEV drivers tend to avoid range anxiety and recharge at high battery SOC.  

The third problem that this dissertation studies is how to model the charging behavior 

of BEV drivers. This dissertation also examines the collective effects of nationwide BEV 

charging under a mature market by applying the CPT-based charging behavior model. To be 

more specific, the research questions that this dissertation will address are as follows. 

(a) How to model BEV drivers’ charging decisions allowing limited rationality? What 

are the impacts of drivers’ risk attitudes and public charger network on charging behavior? 

 (b)What are the collective effects of charging behavior under the future BEV mass-

market scenario? In particular, the characteristics of charging times and locations and the 

impacts on the power grid are of great interest. 

(c) How to mitigate the impact of charging on the power grid through time-of-use 

electricity pricing scheme?  

1.3. Dissertation Structure 

This dissertation is organized as follows. Chapter 2 introduces the data used in this 

dissertation. The NYC taxi trip data were collected in the year of 2013. This chapter presents 

the data filtering methods, the way of estimating taxi trip distance, and the statistical facts of 

the NYC yellow taxi fleet. This dataset will be used for the studies in Chapter 3 and Chapter 

4. The second dataset used for the research in Chapter 5 is 2017 National Household Travel 
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Survey data. The data schematic and statistical facts are presented. The Chapter 3 analyzes 

the feasibility to replace gasoline taxis with BEVs in New York City from the perspective of 

travel patterns. This chapter extracts ten variables from the trip data to represent the spatial-

temporal travel patterns of taxis and proposes a model to quantify BEV feasibility. The 

charging infrastructure that supports large-scale adoption of BEV taxis is also studied in this 

chapter. Chapter 4 examines the second problem of this dissertation—the potential of 

replacing current taxis with EAVs. A simulation framework for the operations of EAV taxis 

is designed. An optimization-based model and a neural network-based model for EAV taxi 

dispatch are proposed. In addition, we compare the performance of current taxis and the EAV 

taxis that are dispatched by the neural network-based model. EAV taxis are able to improve 

operational efficiency and reduce fleet size. In Chapter 5, we propose a cumulative prospect 

theory based modeling framework to describe the charging behavior of drivers of personal 

BEV. Using the most updated 2017 National Household Travel Survey data, we build a BEV 

mass-market scenario. The collective effects of BEV charging under the mass-market 

scenario are explored. Finally, Chapter 6 summarizes the major findings and contributions of 

this dissertation, and discusses future research directions. 
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CHAPTER 2.    DATA 

2.1. New York City Taxi Trip Data 

2.1.1. Data Description 

New York City owns a large number of taxis, among which 13,587 were yellow taxis 

driven by 38,139 active drivers in 2015 (NYC TLC, 2016). Yellow taxis provide street hails 

and e-hails in the five NYC boroughs (i.e. Bronx, Brooklyn, Manhattan, Queens, and Staten 

Island) and the two airports (i.e. LaGuardia airport and John F. Kennedy international 

airport), as shown by Figure 2.1. Onboard GPS devices are implemented on the yellow taxis 

to track and record the timestamped trajectories during operation. NYC Taxi and Limousine 

Commission (TLC), the agency responsible for managing the city’s taxicabs, published the 

taxi trip data since 2009. 

 

Figure 2.1  Location of NYC boroughs and airports (NYC TLC, 2014). 

The data used in this dissertation span the whole year of 2013 and was pre-processed 

by Donovan and Work (2016; 2017), who rendered the vehicle ID and driver ID pseudo 
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anonymous. The high resolution timestamped vehicle trajectories are not available. Instead, 

only records of occupied trips are available, which include when and where customers were 

picked up and then dropped off, travel distance, and travel time. Table 2.1 lists the data fields 

used in the dissertation. 

Table 2.1  Data fields used in the NYC yellow taxi trip data. 

Data field Description 
Medallion The anonymous identification of each taxi. 
Hack license The anonymous identification of each driver. 
Pickup datetime The date and time when customers are picked up. The precision is up to 

seconds. 
Dropoff datetime The date and time when customers are dropped off. The precision is up 

to seconds. 
Trip time in secs The travel time measured by taximeter (second). 
Trip distance The trip distance measured by taximeter (mile). 
Pickup longitude The longitude of the location where customers are picked up. 
Pickup latitude The latitude of the location where customers are picked up. 
Dropoff longitude The longitude of the location where customers are dropped off. 
Dropoff latitude The latitude of the location where customers are dropped off. 

 

2.1.2. Data Filtering 

There are a considerable number of errors in the data, for example, trip length of 

1,000 miles, zero travel time, and out-of-boundary GPS coordinates. Validity of the research 

results could suffer from these erroneous values, so the trip records that do not satisfy all the 

following three criteria are discarded. 

(a) Travel time is a positive value and does not exceed 3 hours. 

(b) Trip length is a positive value and does not exceed 100 miles. 

(c) The pick-up and drop-off GPS coordinates are within the range of 73.5° W to 

74.25° W longitude, and 40.4° N and 41.1° N latitude.  
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As long distance trips have a significant impact on BEV feasibility, criterion (a) and 

(b) allow to keep long trips provided that the travel time and trip length are reasonable. The 

study area defined by criterion (c) is wider than the city boundary and covers three main 

airports––John F. Kennedy International (JFK), LaGuardia (LGA) and Newark Liberty 

International (EWR) that lie in the NYC suburb areas. 

The whole-day data of a taxi is then removed if there is one or more erroneous trips, 

for these errors break up trip continuity and make DVMT estimation inaccurate. Trips that 

occurred on November 3rd, 2013 when the daylight saving time ended are also discarded 

because on that day clocks were tuned backward 1 hour to the standard time, making some 

trips chronologically disordered.  

2.1.3. Unoccupied Trip Estimation 

Although not captured in the data, unoccupied trips can be approximately 

reconstructed on the basis of two adjacent occupied trips, that is, an unoccupied trip starts 

from the drop-off location of the last occupied trip and ends at the pick-up location of the 

next occupied trip. With the GPS coordinates of the last drop-off and the next pick-up 

location, the empty trip’s straight-line distance 𝐿𝐿 is calculated as the Euclidean distance. 

Yang and Gonzales (2016) used Euclidean distance to represent real travel distance of 

unoccupied trips, which tends to result in underestimation. Zhan et al. (2016) estimated real 

distance by taking advantage of the road network of NYC, but this method is 

computationally heavy. In this dissertation, the actual distance 𝐷𝐷 of unoccupied trips is 

estimated by Equation 2-1, that is the least-squares fitting result from the actual and straight-

line travel distance of occupied trips. Here we assume that occupied and unoccupied trips 

share the same spatial relationship. With the help of taxi dispatch and e-hailing system 

drivers might know the location of the next customers and will drive along the shortest path. 
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𝐷𝐷 = 1.4413𝐿𝐿 + 0.1383   (𝑅𝑅2 = 0.9485) (2-1) 

where  

𝐷𝐷 is the actual travel distance (mile); 

and 𝐿𝐿 is the straight-line distance (mile). 

Between two occupied trips, taxi drivers might cruise around, have a meal, take a 

short break, alter shifts, go back home, etc. Dwell time during an unoccupied trip is defined 

as the time intervals between the two consecutive occupied trips minus the travel time of the 

unoccupied trip. The travel speed of the unoccupied trip is calculated as the average of the 

speeds of the previous and the next occupied trips. The travel distance is estimated using 

Equation 2-1 and the straight-line distance between the drop off location of the previous trip 

and the pickup location of the next trip. The travel time of the unoccupied trip is calculated as 

the travel distance divided by the travel speed. Dwell location is assumed to be the drop-off 

location of the last occupied trip.  As shown in Table 2.2, the estimated average unoccupied 

trip length in NYC is 1.72 miles, which is 41% lower than average occupied trip length. This 

number is similar to taxis in Nanjing, China, where both occupied and unoccupied trip 

information is available. In Yang et al. (2016), the average unoccupied trip length is 42% 

lower than the average occupied trip length. Note that taxis in both NYC and Nanjing are 

mainly street-hailed in current operations. 

2.1.4. Summary Statistics of the Dataset 

During the year of 2013, the entire dataset includes 14,144 yellow taxis, which were 

driven by 43,191 drivers, completed 173 million occupied trips with a total distance of 501 

million miles. On average each taxi operated for 331 days in one year. After data filtering, 

there are 13,336 taxis with at least 70 days and an average of 306 days of trip data remaining. 
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The sampled fleet completed 149 million occupied trips with a total distance of 432 million 

miles, which represents 86% of the total occupied trips in 2013. Table 2.2 lists the summary 

statistics of the 13,336 taxis’ travel patterns. 

Table 2.2  Summary of the travel patterns of the sampled taxi fleet. 

 Minimum Mean Maximum Standard 
deviation 

Occupied trip length (mile) 0.01 2.91 100 3.36 
Occupied trip time (minute) 1 12.5 180 9.3 
Unoccupied trip length (mile) 0 1.72 55 2.82 
Number of occupied trips per day 1 36 122 14.5 
DVMT (mile) 0.09 168 858 59 
Number of dwells (>30min) per day 0 3.4 13 1.6 

 

2.2. 2017 National Household Travel Survey Data 

The Federal Highway Administration has been collecting travel behavior data of the 

U.S. residents in all 50 States and the District of Columbia through a random sampling 

approach since 1969. The 2017 National Household Travel Survey is the eighth and most 

recent survey (U.S. DOT, FHWA, 2017). The NHTS data is an inventory of travel behavior 

of a respondent during a travel day, including trips made by all modes of transportation, e.g. 

public transit, bicycle, personal vehicles, and ride-sharing, and for all purposes, e.g. work 

commute, recreation, and school. The NHTS is also the main source on how American 

people’s travel behavior is linked to individual personal and household characteristics, socio-

economic attributes, and vehicle ownership. There are four data files in the survey—TRIP, 

VEHICLE, PERSON, and HOUSEHOLD.  

The TRIP file records all trips taken by each person in a household during a travel 

day. For each trip, the respondents report trip origin and destination, trip distance, mode of 

transportation, time of day of travel, day of week of travel, travel companions, etc. The 
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VEHICLE file of the 2017 NHTS consists of 242,160 passenger vehicles (i.e. cars, SUVs, 

vans, or pickup trucks) owned by the respondents. This dataset contains attributes of each 

vehicle, such as vehicle manufacturer, model, years owned, age, and odometer reading. The 

2017 NHTS introduces a new field in the VEHICLE file—HFUEL to indicate the type of 

powertrain (gasoline engines, electric motors, or hybrid). HFUEL = 3 means that the vehicle 

is a BEV. The HOUSEHOLD data file contains information on the socio-economic 

characteristics of a respondent household, including family income, number of workers, 

housing type, neighborhood, area, etc. There are 129,696 households in the 2017 NHTS. For 

each individual household member, the PERSON data record the demographic characteristics 

of the person, e.g. gender, age, and driver status. The TRIP, VEHICLE, PERSON, and 

HOUSEHOLD data files can be linked to each other. Figure 2.2 illustrates the relationships 

between the four datasets. 

 

Figure 2.2  Schematic of the 2017 NHTS data. 
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CHAPTER 3.    ANALYZING BATTERY ELECTRIC VEHICLE FEASIBILITY 
FROM TAXI TRAVEL PATTERNS: THE CASE STUDY OF NEW YORK CITY 

3.1. Introduction 

Vehicle electrification has been widely considered as a way to reduce the dependency 

of transportation sector on petroleum and reduce emissions of greenhouse gases and harmful 

air pollutants. In particular, since taxis usually drive in highly-populated areas, substituting 

the battery electric vehicles for conventional gasoline vehicles in the taxi fleet has the 

potential to improve urban air quality. BEVs are also attractive to taxi drivers, because of the 

lower electricity cost compared to gasoline and the less maintenance expenditure (Sathaye, 

2014). As a result, cities around the world such as New York City, USA (NYC TLC, 2013), 

Berlin, Germany (Bischoff et al., 2015), Shenzhen, China (Tu et al., 2016) and Bogota, 

Colombia (Urban Foresight Limited, 2014) have been promoting electric taxis. In particular, 

New York City has a vision to replace one-third of taxi fleet with BEVs by 2020 (NYC TLC, 

2013). 

Nevertheless, BEV taxi deployment is impeded by several obstacles. Since taxis are 

usually continually operated by multiple shifts day and night, overnight charging at home 

might not be an option. Instead, within-day charging at public charging stations during taxi 

operation hours becomes necessary. However, in most cities the coverage of charging 

stations is still sparse. The profit-driven taxis would not want to wait for a long time to 

charge the batteries at the expense of losing customers. Frequent charging and depleting 

batteries may shorten the life of batteries (Barré et al., 2013), which is another concern over 

adopting BEVs in the taxi fleet. With the advances in battery technology, longer battery life, 

higher energy density and faster charging will relieve the range anxiety and reduce charging 

inconvenience. Ride-hailing services, coupled with self-driving cars, are expected to achieve 
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a more efficient dispatch system and may help promote large-scale BEV taxi deployment 

(Golson, 2017; Hawkins, 2017a).  

This chapter analyzes the electric taxi feasibility based on the travel activities of 

current CGV taxis. BEV feasibility research typically extracts travel patterns from the travel 

data collected from vehicles for a period of time. Daily vehicle miles traveled is often used as 

one indicator to infer a vehicle’s suitability for BEVs, as seen in Atlanta, USA (Pearre et al., 

2011), Seattle, USA (Khan and Kockelman, 2012), Sydney, Australia (Greaves et al., 2014). 

For example, the driving data collected from 484 private CGVs over a year in Atlanta 

revealed that the daily driving needs of 9% of the sampled vehicles could be fulfilled by 

BEVs with a 100-mile range because their daily driving distance never exceeded 100 miles 

during the data collection period (Pearre et al., 2011). Other than DVMT, BEV feasibility is 

also quantified as the probability that the ratio of travel distance between two charges to the 

battery range remains within a certain level in Dong and Lin (2014). This research concluded 

that about 10% of the sampled private car drivers in Seattle needed to make adjustment to 

less than 0.5% of travel days if they were comfortable with using up the range of 76 miles 

(i.e. representative of a Nissan Leaf 2012 model).  

The above-mentioned studies focused on the BEV feasibility of private vehicles. 

Taxis, on the other hand, have their own distinct characteristics in terms of shared use, long 

operational time, and dwell patterns. In New York City, a typical yellow taxi is assigned 3 

drivers and travels 70,000 miles annually, and the average shift lasts for 9.5 hours (NYC 

TLC, 2014; NYC TLC, 2016). The data collected from taxis in Shanghai (Luo et al., 2017), 

Beijing (Li et al., 2016), and Shenzhen (Nie, 2017), China revealed long daily driving 

distances that are likely to exceed BEV range. In terms of dwell patterns, it is found that 
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approximately 80% of the studied taxis in Beijing had average parking time of at least 5 

hours per day (Cai et al., 2014), and taxis in Berlin, Germany were in favor of waiting for 

customers at airports for several hours (Bischoff et al., 2015). BEV feasibility of taxis has 

been examined from different perspectives, including benefit-to-cost ratio (Baek et al., 2016), 

environmental benefits (Yang et al., 2016), energy consumption (Zou et al., 2016), daily 

driving distance (Chrysostomou et al., 2016), and electrification rate of vehicle miles traveled 

(Li et al., 2017). Different from previous studies, this research examines electric taxi 

feasibility based on taxis’ spatial-temporal travel patterns in terms of driver-shift, travel 

demand and dwelling, as well as the impact of charging infrastructure coverage. The 

feasibility is quantified as the percentage of occupied trips that can be completed by BEVs 

during a year. The findings from the study can help taxi drivers make informed decisions to 

adopt BEVs and assist policy makers in allocating public resources in support of electric taxi 

deployment. 

3.2. Methodology 

3.2.1. Quantification of Electric Taxi Feasibility 

This study quantifies a taxi’s BEV feasibility as the percentage of occupied trips that 

can be completed by BEVs among all occupied trips during the year. Different from personal 

vehicles, taxis are usually driven day and night by multiple shifts. Thus, assuming that 

batteries can be fully charged overnight at home (Dong et al., 2014) is not practical for taxis. 

Instead, the proposed approach allows taxis to continuously operate for a one-year period and 

charge batteries during long dwell events. If taxis run out of electricity and have to resort to 

emergency charging, several subsequent occupied trips are probably missed. 

Consider a fleet of electric taxis 𝐼𝐼 = {1, 2, … , 𝑛𝑛}. Assume the batteries are fully 

charged at the beginning of the first occupied trip in 2013. For each taxi, travel distances of 
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both occupied and unoccupied trips can be estimated from the trip data. Accordingly, 

distance variables are defined as follows. 

𝑜𝑜𝑜𝑜𝑖𝑖(𝑘𝑘) Travel distance of taxi 𝑖𝑖’s 𝑘𝑘-th occupied trip (mile). 

𝑢𝑢𝑜𝑜𝑖𝑖(𝑘𝑘) Travel distance of taxi 𝑖𝑖’s 𝑘𝑘-th unoccupied trip (mile), that is, the trip 

immediately after the 𝑘𝑘-th occupied trip.  

BEV-associated parameters include electric range and electricity consumption rate. 

Tesla Model S (maximum 351-mile range) is among the candidates for NYC electric taxis in 

spite of its high price tag (NYC TLC, 2013). BEVs with shorter range, such as Tesla Model 3 

(215-mile range) and Chevrolet Bolt (238-mile range), are more affordable––the price is 

about $35,000 and $30,000 after incentives, respectively (Chevrolet, 2017; Tesla, 2017). 

With technology advancement, it is predicted that BEVs will feature longer range at lower 

price in the near future (Ajanovic, 2015). Thus, this study considers the feasibility of using 

BEVs with ranges of 200 miles and 300 miles (i.e.  𝑅𝑅𝑖𝑖 = 200, 300, ∀𝑖𝑖) as taxis. Electricity 

consumption rate varies greatly due to different driving habits, traffic conditions and 

environmental factors. In this study a fixed consumption rate is assumed as 0.3 kW h/mile 

(i.e.  𝑟𝑟𝑖𝑖 = 0.3, ∀𝑖𝑖) (Plugin America, 2016). 

𝑅𝑅𝑖𝑖 Electric range of taxi 𝑖𝑖 (mile). 

𝑟𝑟𝑖𝑖 Electricity consumption rate of taxi 𝑖𝑖 (kW h/mile). 

The charging decision depends on the dwell time, remaining electric range, distance 

to the nearest charging station, and so on. In this study, two types of charging are 

considered—dwell charging and emergency charging. For dwell charging, a taxi will charge 

if three conditions are satisfied. First, the dwell time is longer than 30 minutes. Currently 

almost all charging stations in NYC are installed with 20-kW AC Level 2 chargers. With 



www.manaraa.com

24 

such chargers, the BEV’s remaining range can increase by about 33 miles in half an hour. 

Taxi drivers might be reluctant to charge if dwell time is short. The 30-minute assumption 

was also used in other studies to define potential charging opportunities (e.g. Yi and Bauer, 

2016, Li et al., 2017). Second, remaining electric range is below 50%. By studying the 

distribution of battery SOC before charging, Zou et al. (2016) found that around three 

quarters of BEV taxi drivers will not charge their cars until SOC drops below 50%. Thus, this 

research assumes taxi driver will consider charging if the SOC is below 50%. Third, the 

nearest charging station is within 0.5 miles. In the literature, the service radius of a charging 

station is assumed as 1 mile in (Cai et al., 2014) and 1.25 miles in (Li et al., 2017). This study 

assumes a smaller service radius of 0.5 miles considering taxi drivers’ unwillingness to 

detour for charging and the heavy traffic in Manhattan. The related variables are defined 

below. 

𝑜𝑜𝑑𝑑𝑖𝑖(𝑘𝑘) Dwell time between taxi 𝑖𝑖’s 𝑘𝑘-th and (𝑘𝑘+1)-th occupied trip (minute).  

𝑐𝑐𝑑𝑑𝑖𝑖(𝑘𝑘) Charging time between taxi 𝑖𝑖’s 𝑘𝑘-th and (𝑘𝑘+1)-th occupied trip (minute). 

𝑠𝑠𝑑𝑑𝑖𝑖 Setup time for charging of taxi 𝑖𝑖 (minute). Assume to be 2 minutes, ∀𝑖𝑖.  

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) Remaining electric range at the drop-off location of the 𝑘𝑘-th occupied 

trip (mile).  

𝑐𝑐𝑜𝑜𝑖𝑖(𝑘𝑘) Straight-line distance from the drop-off location of taxi 𝑖𝑖’s 𝑘𝑘-th occupied trip 

to the nearest charging station (mile). 

Therefore, the charging time is the dwell time minus a setup time for charging. The 

detour time is ignored for dwell charging since the charging station is within 0.5-mile radius.  

𝑐𝑐𝑑𝑑𝑖𝑖(𝑘𝑘) = �
𝑜𝑜𝑑𝑑𝑖𝑖(𝑘𝑘) − 𝑠𝑠𝑑𝑑𝑖𝑖 ,   𝑜𝑜𝑑𝑑𝑖𝑖(𝑘𝑘) > 30,𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) < 0.5𝑅𝑅𝑖𝑖 , 𝑐𝑐𝑜𝑜𝑖𝑖(𝑘𝑘) ≤ 0.5

0,   𝑜𝑜𝑑𝑑ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (3-1) 
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Multiple charging levels might be available at a charging station. This study considers 

7-kW AC Level 1 chargers, 20-kW AC Level 2 chargers, and 50-kW DC fast chargers for the 

analysis, according to the SAE J1772 standard (SAE, 2016). Since taxi drivers generally 

prefer faster chargers, when multiple levels of chargers are available at a charging station the 

fastest charger will be chosen. 

𝑃𝑃𝑖𝑖(𝑘𝑘) The highest charging power at the nearest charging station from the drop-off 

location of taxi 𝑖𝑖’s 𝑘𝑘-th occupied trip (kW). 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑘𝑘) Electric range increase by recharging at the 𝑘𝑘-th unoccupied trip 

(mile), which is determined by charging time and power, but will not exceed the battery 

capacity. Therefore, 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑘𝑘) = min �𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘), 𝑃𝑃𝑖𝑖(𝑘𝑘)⋅𝑐𝑐𝑐𝑐𝑖𝑖(𝑘𝑘)

𝑟𝑟𝑖𝑖
� (3-2) 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) is calculated based on the remaining range at the end of the previous trip, 

possible charging, and travel distance. 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) = 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘−1) + 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑘𝑘−1) − 𝑢𝑢𝑜𝑜𝑖𝑖(𝑘𝑘−1) − 𝑜𝑜𝑜𝑜𝑖𝑖(𝑘𝑘) (3-3) 

When 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) drops below 10% of range, taxi 𝑖𝑖 needs emergency charging from the 

drop-off location of the 𝑘𝑘-th occupied trip, because it is very likely stranded in the next trip. 

If 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖(𝑘𝑘) becomes negative, taxi 𝑖𝑖 has to resort to emergency charging from the drop-off of 

the (𝑘𝑘-1)-th occupied trip. That is, the taxi will not have accepted the 𝑘𝑘-th customer due to 

the insufficient range. During emergency charging, the taxi drives to the nearest charging 

station at the average speed calculated from the dataset––13 mph, and gets batteries fully 

charged (100% SOC). The detour distance (𝑜𝑜𝑜𝑜𝑖𝑖(𝑘𝑘) in miles) is estimated by Equation 2-1.  
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Figure 3.1  Flow diagram of the model of quantifying electric taxi BEV feasibility. 

After charging is finished, the taxi will continue from the occupied trip that starts 

after the charging completion time. Since over 90% of taxi pick-ups and drop-offs occur in 

Manhattan (NYC TLC, 2014) that is only a small part of the studied area (see Figure 2.1), the 

trips from emergency charging stations to the next customer are short compared to BEV 

range (200 or 300 miles) and thus are ignored. As a consequence, several occupied trips 

probably are missed due to emergency charging, and the percentage of occupied trips during 

the year that can be electrified by public charging is used as the indicator of taxi 𝑖𝑖’s BEV 

feasibility (𝐹𝐹𝑖𝑖). A taxi is regarded as BEV feasible if at least 99% of its occupied trips can be 
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completed by BEVs; otherwise the taxi is BEV infeasible. On average, a taxi works 306 days 

in the year and completes 36 occupied trips per working day. Therefore, a BEV-feasible taxi 

will miss only 2 (306×7×36×1%
365

 = 2) occupied trips per week. 

The model of quantifying electric taxi BEV feasibility is illustrated in Figure 3.1. 

3.2.2. Taxi Travel Patterns 

Travel patterns represent how NYC yellow taxis are operated, and hence have some 

important implications on whether the CGV taxi can switch to a limited range BEV. For each 

taxi, we extract 10 variables from its travel activity data, to characterize its driving behavior 

in 3 aspects––driver-shift, travel demand, and dwelling. Table 3.1 describes these variables. 

Table 3.1  Ten taxi travel pattern variables extracted from data. 

Type Variable Description 

Driver-shift related 

𝑋𝑋1 Mean of the number of daily shifts. 
𝑋𝑋2 Mode of the number of daily shifts. 
𝑋𝑋3 Number of drivers assigned to the taxi in a year. 
𝑋𝑋4 Mean of the number of shifts per driver in a year. 

Travel demand related 

𝑋𝑋5 Mean of occupied trip length (mile). 
𝑋𝑋6 Mean of DVMT (mile). 

𝑋𝑋7 Mean of travel distance between two charging 
opportunities (mile). 

Dwelling related 
𝑋𝑋8 Mean of the number of daily dwells. 
𝑋𝑋9 Mean of dwell length (minute). 
𝑋𝑋10 Percentage of dwells occurred in Manhattan (%). 

 
The first four variables are driver-shift related, explaining the features of shifts and 

drivers assigned to a taxi. Taxis are driven by one or more shifts during a day. Intuitively, 

more daily shifts are likely associated with longer hours of operation and longer travel 

distance, which might make it less suitable to switch to a BEV. In addition, a taxi might be 

assigned to different drivers over a year, denoted by 𝑋𝑋3. Some taxis have one or two fixed 

drivers during the entire year, while others change drivers frequently. The other driver-shift 
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related variable (𝑋𝑋4) is calculated based on Equation 3-4, which indicates, for a certain taxi, 

the average number of shifts that a driver is assigned to the taxi in a year. 𝑋𝑋3 and 𝑋𝑋4 reveal 

whether a taxi has stable driver assignment. 

𝑋𝑋4 = 𝑁𝑁×𝑋𝑋1
𝑋𝑋3

 (3-4) 

where 

𝑁𝑁 is the number of working days. 

In terms of travel demand, the variables of interest include the average length of 

occupied trips (𝑋𝑋5) for each taxi and the daily vehicle miles traveled (𝑋𝑋6). A taxi that often 

drives a lot might not be suitable for BEVs. To account for limited coverage of public 

charging network in the city, the travel distance between two consecutive charging 

opportunities (𝑋𝑋7) is calculated based on the charging station locations. When a taxi dwells 

for more than 30 minutes and the nearest charging station is within 0.5 miles, the taxi has an 

opportunity to charge. 

Furthermore, dwell patterns are important for electric taxis, because taking advantage 

of parking time to charge batteries causes minimal inconvenience. The temporal 

characteristics of dwell events are captured by the average number of daily dwells (𝑋𝑋8) and 

the average dwell length (𝑋𝑋9), which collectively determine the possible charging time during 

a day. The spatial characteristics of dwell events are represented by the percentage of dwells 

occurred in Manhattan (𝑋𝑋10), as this borough has better charging infrastructure coverage and 

taxis are more likely to find a charger. 

3.2.3. Expansion of Charging Infrastructure 

As of December 22, 2016, there were 280 public charging stations in use in New 

York City, among which 223 (80%) are located in Manhattan, 2 in JFK airport and 4 in LGA 
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airport (U.S. DOE, 2016). Detailed information associated with these stations such as 

address, number of chargers, levels of chargers is available through (U.S. DOE, 2016). 

Almost all the charging stations are installed with Level 2 chargers. Figure 3.2 illustrates the 

station locations, with the corresponding service area covered (i.e. a buffer of 0.5-mile 

radius). It is seen that Manhattan has extensive charging station coverage, while very few 

chargers are located at other boroughs. 

 

Figure 3.2  Current public charging network in NYC, with a buffer of 0.5-mile radius. 

Current charging 
stations with a buffer 
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The current charging infrastructure in NYC includes public accessible stations (about 

54%) and private business stations, such as Tesla superchargers (about 40%) and car-

dealership chargers for their customers (about 6%). BEV taxis can use public accessible 

stations for charging and pay electricity and usage fees. The private business stations might 

be incompatible with or inaccessible to BEV taxis. These issues might be mitigated through 

installing converters, pricing, etc. For example, Tesla has introduced the Tesla-to-J1772 

adapter to allow non-Tesla electric vehicles, e.g. BMW i3 or Nissan Leaf, to charge at 

Tesla’s supercharger stations (Lambert, 2017). As seen in Figure 3.2, the current charging 

infrastructure provides good coverage in Manhattan. In practice, additional grid capacity is 

usually reserved to serve potential peak load and future expansion at existing charging station 

locations (Xi et al., 2013). Therefore, we use the current charging station locations as the 

base case charger network coverage, acknowledging that capacity expansion or accessibility 

barriers need to address at some of the locations. 

Insufficient charging infrastructure is one of the hindrances to electric vehicle 

adoption. New York City plans to expand the charger network to boost BEV taxis because 

the current charging stations are nearly impossible to meet the charging demand of a large-

scale fleet of BEV taxis (NYC TLC, 2013). Thus, in this chapter, a scenario of expanded 

charger network is considered for BEV taxi feasibility analysis. Various approaches have 

been proposed in the literature to site charging facilities (e.g. He et al. 2015, Yang et al. 

2017, Shahraki et al. 2015). This study considers the centers of the census tracts as potential 

charging station locations. For each census tract of NYC, a spatial joining is conducted to 

count the number of dwell locations where taxis cannot reach a charger within 0.5 mile based 

on the existing charger network. New charging stations are added in the census tracts where 
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taxis frequently dwell. Since taxis prefer waiting for customers at airports, new charging 

stations are placed at several parking lots within the JFK and LGA airport census tracts to 

cover as many dwell locations as possible. 

3.3. Results 

3.3.1. Expanded Charging Network 

New charging stations are sited at the census tracts where taxis frequently dwell. 

Figure 3.3 shows the distributions of daily dwell events without a nearby charging station.  

 

Figure 3.3  Distributions of daily dwells without charging opportunities. 
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JKF and LGA airport have averagely 773 and 122 dwells without charger per day, 

respectively, constituting the top 2 places where taxis have large unmet charging needs. 

Although the trips to EWR airport are considered in this study, no additional charging station 

is added, as EWR is in the state of New Jersey. Another area with relatively large unmet 

charging demand (i.e. 50~100 dwells per day) is Long Island City, which is the westernmost 

neighborhood of Queens and adjacent to midtown Manhattan. This is likely where drivers 

change shifts (Grynbaum, 2011). The other census tracts with considerable unmet charging 

demand (i.e. 5~50 dwell per day) are mainly distributed at Upper Manhattan, East Village of 

Manhattan, Northwest Queens adjacent to Manhattan, Middle North Brooklyn, along 

Interstate-678 connecting the two airports, along New York Route-25 connecting Manhattan 

and Interstate-678, and the areas near JFK airport. 

 

Figure 3.4  Relationship between number of new charging stations and percent of satisfied 
charging demands. 

A new charging station is placed at the geometric center of a non-airport census tract 

polygon that has more than 5 dwells without charging opportunities per day. 364 census 

tracts, colored with yellow and orange in Figure 3.3, satisfy the condition and accommodate 
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73% of charging demands in non-airport census tracts. Figure 3.4 plots the number of new 

charging stations and the percentage of satisfied charging demands with different selection 

thresholds, from >20 to >0 dwells. With lower threshold and more charging stations, more 

charging demands can be covered, however, the marginal benefit decreases after >5 dwells. 

 

Figure 3.5  Expanded public charging network in NYC, with a buffer of 0.5-mile radius. 

The airports, however, cover a larger area and have more available parking spaces for 

building charging stations. Thus, we select 2 parking lots at LGA airport and 6 parking lots at 

Current charging 
stations with a buffer 
New charging stations 
with a buffer 
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JFK airport to add charging stations, in order to cover as many dwell locations as possible. In 

total, 372 new stations are added in the expanded charging network. With the additional 

charging stations, the entire public charging infrastructure in NYC is displayed in Figure 3.5.  

3.3.2. BEV Taxi Feasibility 

The feasibility of replacing CGV taxis in New York City with BEVs with a range of 

200 miles and 300 miles is examined. If a taxi can complete at least 99% of the occupied 

trips using a BEV, it is considered BEV feasible. Some taxis might achieve the feasibility 

with 200-mile range BEVs; while others might require a battery range of 300 miles. If 300-

mile range still cannot complete a majority of occupied trips for some taxis, they are 

considered as BEV infeasible. Therefore, all taxis are categorized into 3 groups––BEV 200-

feasible, BEV 300-feasible, and BEV infeasible. 

Figure 3.6 compares the electric taxi feasibility by group for current and expanded 

charging infrastructure in New York City. The existing 280 public charging stations are far 

from adequate to serve electric taxis. Only 1.4% of taxis are BEV 200-feasible and 5.4% of 

taxis are BEV 300-feasible, while 93.1% of the fleet cannot complete 99% of occupied trips 

using a BEV-300. However, when the number of charging stations is expanded to 652, taxis 

have more charging opportunities and thus fewer occupied trips will be missed. About half of 

the infeasible taxis become BEV feasible. In particular, BEV 300-feasible group increases 

dramatically to 5,667 taxis (or 42.5% of the fleet), and the share of BEV 200-feasible taxis 

increases to 8.0%.  
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Figure 3.6  Electric taxi feasibility by group for current and future charging infrastructure. 

3.3.3. Impacts of Travel Patterns on BEV Taxi Feasibility 

Considering the expanded charging infrastructure, the travel patterns of the three 

groups exhibit distinct characteristics. Figure 3.7 shows the boxplots by group of the 4 

driver-shift related variables after removing outliers. The group means are marked by the 

square points. Figure 3.7(a) and Figure 3.7(b) show that fewer daily shifts are associated with 

higher BEV feasibility, probably because these taxis are driven fewer hours and are more 

likely to have long dwell time between shifts for charging. Specifically, we have found that 

(1) BEV 200-feasible taxis have the lowest average number of daily shifts, with the mean of 

1.8 shifts per day; while BEV infeasible taxis, as expected, are driven intensively, with the 

mean of 2.5 shifts per day; (2) BEV 200-feasible group also has the largest variation in daily 

shifts, as the taxis with 1 shift per day generally fall in this category; (3) the distributions of 

the mode of the number of daily shifts confirm that BEV 200-feasible taxis have fewer shifts, 

and most BEV 200-feasible taxis operate 1~2 shifts per day; and (4) most BEV 300-feasible 

and BEV infeasible taxis have 3 shifts per day. Other than shifts, we also examine the 
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number of drivers assigned to a taxi and the yearly shifts a driver conducts to explore the 

relationship between drivers and taxis. As shown in Figure 3.7(c), BEV feasible taxis tend to 

have fewer drivers, that is, more stable driver assignment over a year. By contrast, BEV 

infeasible taxis could have as many as 329 different drivers during the year. The distributions 

of the average number of shifts per driver, as shown in Figure 3.7(d), also reveal that BEV 

feasible taxis tend to have more stable driver assignment. The median of the yearly number 

of shifts per driver for the BEV infeasible group is 54, much lower than the BEV feasible 

groups (i.e. 195 for BEV 200-feasible and 141 for BEV 300-feasible). In short, the driver-

shift patterns imply that fewer shifts and less frequently change of drivers are favorable to 

BEV use. 

  
(a) mean number of daily shifts (b) mode of number of daily shifts 

  
(c) number of drivers (d) number of shifts per driver 

Figure 3.7  Boxplots by group of driver-shift related variables. 
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Figure 3.8 compare the distributions of the travel demand related variables for 

different BEV feasibility groups. We concern about whether the CGV taxi travel needs can 

be met by a BEV-200 or BEV-300. First, in terms of the average occupied trip length (Figure 

3.8(a)), there is no significant difference between groups. One possible reason is that over 

90% of occupied trips occurred in Manhattan (NYC TLC, 2014) and these trips tend to have 

similar length. The average of DVMT, however, have a direct impact on BEV feasibility as 

shown in Figure 3.8(b). Taxis with shorter DVMT are most suitable for BEVs. The group 

means are 111 miles, 157 miles and 184 miles for BEV 200-feasible, BEV 300-feasible and 

BEV infeasible group, respectively. Since DVMT indicate demand for BEV range, taxis that 

travel fewer miles a day are more likely to adopt BEVs. A few taxis with average DVMT of 

over 200 miles are BEV 200-feasible, which is possibly because they have proper within-day 

charging opportunities. On the other hand, the average DVMT of the majority of BEV 

infeasible taxis are less than 200 miles. Neither BEVs-200 nor BEVs-300 can complete 99% 

of the occupied trips of these taxis. This is due to the day-to-day variations in DVMTs and 

the lack of charging opportunities. Mean travel distances between two charging opportunities 

also show significant differences among groups (seen in Figure 3.8(c)). On average, a BEV 

200-feasible taxi will dwell near a charging station after traveling 38 miles. BEV 300-

feasible and BEV infeasible taxis, on average, need to drive 48 miles and 58 miles, 

respectively, to find a charging opportunity. The likelihood of coming across charging 

opportunities depends on where and how often the driver dwells for more than 30 minutes. If 

a taxi usually dwells outside the charging station coverage areas, its chance of switching to a 

BEV would become lower. 
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(a) mean occupied trip length (b) mean DVMT (c) mean distance between 

charges 

Figure 3.8  Boxplots by group of travel demand related variables. 

The spatial-temporal dwell patterns are associated with where and when taxis can 

potentially charge battery. From the boxplots of the mean of daily number of dwells in Figure 

3.9(a), it is found that BEV 300-feasible and BEV infeasible taxis share similar mean values, 

that is, around 3.2 dwells per day, but a slightly larger variance is observed in the BEV 300-

feasible group. BEV 200-feasible taxis have even larger variance, peaking at 6 times of 

dwelling per day, with slightly lower mean and median than the other two groups. The 

distributions of dwell lengths are shown in Figure 3.9(b). BEV 200-feasible taxis have 

significantly longer dwell durations, with the group mean of 356 minutes. BEV infeasible 

taxis dwell for the shortest time period (209 minutes on average), indicating the time can be 

used for charging is limited. The spatial dwell feature is represented by the percentage of 

dwells that occurred in Manhattan, as this borough has wider charger coverage. The results in 

Figure 3.9(c) show that BEV 200-feasible taxis are more likely to dwell in Manhattan (92.7% 

on average), and correspondingly these taxis have more access to charging facilities. 
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(a) mean of daily dwells (b) mean of dwell length (c) percent of dwells in 

Manhattan 

Figure 3.9  Boxplots by group of dwelling related variables. 

In summary, from the above analysis, it can be concluded that a taxi with such travel 

patterns are more suitable to switch to a BEV––fewer daily shifts, fewer different drivers, 

more shifts per driver conducts in a year, shorter daily driving distance, shorter travel 

distance between charges, less number of daily dwells but longer dwelling time, and a higher 

possibility of dwelling in Manhattan. 

3.3.4. Factors Influencing the Change of BEV Feasibility 

With the current 280 charging stations, 12,420 taxis are labeled as BEV infeasible. If 

the additional 372 charging stations are built, 44% of the currently BEV infeasible taxis will 

become BEV 300-feasible and 3% will become BEV 200-feasible, while the remaining 53% 

will still be BEV infeasible. To examine how travel patterns influence the change from 

currently BEV infeasible to BEV feasible (either BEV 200-feaible or BEV 300-feasible) after 

the expansion of charging network, classification models that use the 10 travel pattern 

variables as input are developed. Five classification models, including logistics regression, 

linear discriminant analysis, quadratic discriminant analysis, K-nearest neighbors, Bayes 

classification and support vector machine, are trained by 70% of the dataset and tested by the 

rest 30% of the dataset. The training and testing accuracies are shown in Table 3.2. 
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Table 3.2  Training and testing accuracy of classification models. 

Classification model Training accuracy Testing accuracy 
Logistic regression 82.01% 81.87% 
Linear discriminant analysis 81.72% 81.65% 
Quadratic discriminant analysis 79.51% 79.23% 
K-nearest neighbors 77.66% 77.09% 
Bayes classification 76.20% 76.12% 
Support vector machine (linear kernel) 71.98% 72.05% 

 

Since logistic regression has the highest training accuracy (82.01%) and testing 

accuracy (81.87%), it is selected to classify BEV feasible taxis and BEV infeasible taxis after 

the expansion of the charging network. The model form is as follows: 

log � 𝑝𝑝
1−𝑝𝑝

� = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + ⋯+ 𝑏𝑏10𝑋𝑋10 (3-5) 

where 𝑝𝑝 is the probability that a currently BEV infeasible taxi will become BEV 

feasible when charging network is expanded, and b’s are model coefficients. The estimated 

model parameters are given in Table 3.3. The Cox & Snell R-square and the Nagelkerke R-

square of the model is 0.443 and 0.591, respectively, suggesting a moderate fit. The Wald 

chi-square test is applied to each estimated coefficient. The significance (smaller than 0.5) 

associated with the Wald statistics shows that all the coefficients are significantly different 

from zero, indicating all the 10 variables representing taxi travel patterns have a significant 

contribution to discriminating BEV feasible and infeasible taxis. Therefore, the logistic 

regression model can predict whether a currently BEV infeasible taxi will become feasible 

when charging infrastructure is expanded. 

The odds-ratios in Table 3.3 are exponents of the model coefficients and indicate the 

impacts of one unit change in the taxi travel pattern variables on the odds of becoming BEV 

feasible ( 𝑝𝑝
1−𝑝𝑝

). The odds-ratio of 𝑋𝑋7 is smaller than that of 𝑋𝑋6, indicating that the BEV 
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feasibility odds are more sensitive to the average travel distance between charges than to the 

average DVMT. Therefore, improving charger network coverage and reducing the travel 

distance between charges might be more effective in increasing BEV feasibility than 

adopting longer range BEVs. In terms of dwell patterns, the currently BEV infeasible taxis 

are 1.532 times and 1.082 times more likely to become BEV feasible by increasing the 

average number of daily dwells by 1 (i.e. 𝑋𝑋8) and increasing the percentage of dwells in 

Manhattan by 1% (i.e. 𝑋𝑋10), respectively. 

Table 3.3  Estimated parameters of the logistic regression model. 

Variable Coefficient Standard 
deviation 

Wald chi-
square test 
statistics 

Significance Odds-ratio 

𝑋𝑋1: Mean of the 
number of daily shifts 1.388 0.176 61.963 0.000 4.009 

𝑋𝑋2: Mode of the 
number of daily shifts -0.076 0.092 0.675 0.411 0.927 

𝑋𝑋3: Number of 
drivers -0.007 0.001 102.783 0.000 0.993 

𝑋𝑋4: Number of shifts 
per driver in a year 0.003 0.000 64.656 0.000 1.003 

𝑋𝑋5: Mean of occupied 
trip length 0.141 0.057 6.101 0.014 1.152 

𝑋𝑋6: Mean of DVMT -0.055 0.004 242.337 0.000 0.947 
𝑋𝑋7: Mean of travel 
distance between 
charges 

-0.145 0.010 215.517 0.000 0.865 

𝑋𝑋8: Mean of the 
number of daily 
dwells 

0.427 0.167 6.520 0.011 1.532 

𝑋𝑋9: Mean of dwell 
length 0.003 0.001 12.021 0.001 1.003 

𝑋𝑋10: Percentage of 
dwells occurred in 
Manhattan 

0.079 0.012 42.795 0.000 1.082 

Constant 3.815 1.509 –– –– 45.365 
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3.4. Conclusions and Discussions 

This chapter examines the feasibility of substituting the gasoline-powered yellow 

taxis in New York City with BEVs from the perspective of the taxi travel patterns. Ten 

variables are extracted from a whole year taxi trip dataset to characterize the taxi spatial-

temporal driving patterns in terms of driver-shift, travel demand and dwelling. An activity-

based approach is proposed to quantify the BEV taxi feasibility as the percentage of occupied 

trips that can be electrified. It is found that the existing charging network in New York City 

is far from sufficient to satisfy the charging demand of a large-scale electric taxi fleet––only 

8% of yellow taxis can complete 99% or more of the occupied trips if switching to BEVs 

with a range of 200 miles or 300 miles. 372 new charging stations are sited at census tracts of 

New York City where taxis frequently dwell without available chargers. With the expanded 

charging network, about half of the currently BEV infeasible taxis may become suitable for a 

BEV-200 or a BEV-300. In particular, taxis with certain travel patterns are more suitable for 

BEVs, including fewer daily shifts, fewer assigned drivers, shorter DVMT, shorter travel 

distance between charging opportunities, less number of dwells but longer dwelling time, and 

a higher possibility of dwelling in Manhattan. 

There are four main caveats in this study. First, the travel distance, travel time and 

speed of unoccupied trips are estimated based on adjacent occupied trips, as the actual 

unoccupied trip information is not available. With street-hailing operations, unoccupied trips 

may have more detours than occupied trips. However, considering a future scenario when 

taxis are replaced by BEVs and assisted by the increasingly popular taxi dispatch and e-

hailing systems. Taxi drivers will know the location of next customers and drive along the 

shortest path. As a result, the unnecessary detours of unoccupied trips will be significantly 

reduced. Second, during emergency charging, the taxi might not have enough electricity to 
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drive to the nearest charging station. After charging is completed, the travel distance from 

emergency charging station to the next customer is also ignored in the simulation. Since over 

90% of taxi pick-ups and drop-offs occur in Manhattan (NYC TLC, 2014), these detour trips 

are short and have negligible impacts on the BEV taxi feasibility analysis. Third, the study 

assumes that BEV taxis will serve the same occupied trips as the CGV taxis, except for 

missing trips due to insufficient range. In practice, the BEV taxi fleet can satisfy the same 

customer demand without following their original routes. Since the results show how taxis’ 

spatial-temporal travel patterns, in terms of driver-shift, travel demand and dwelling etc., 

affect electric taxi feasibility, BEV taxis could follow trajectories different from CGV taxis 

to achieve the same electrification target, as long as the collective travel patterns remain the 

same. In addition, optimizing the dispatch of taxis to customers can reduce the empty miles 

and may further improve the BEV feasibility. The taxi dispatching problem is, however, 

beyond the scope of the present research. Fourth, charging congestion is not considered. 

Given the limited public charging resources in New York City, BEV taxis might have to wait 

for charging at the expense of missing more occupied trips if the charging station is fully 

occupied. In addition, since usage rates of charging facilities vary over time, charger 

congestion could be worse during peak hours. Therefore, charging congestion might decrease 

taxis’ BEV feasibility. On the other hand, installing fast chargers at popular locations might 

alleviate charging congestion. By ignoring the charging congestion issue, we implicitly 

assume the market efficiency of charging location owners in adding charger capacity or 

implementing smart grid technologies in response to charging demand. 
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CHAPTER 4.    ELECTRIC AUTONOMOUS TAXI DISPATCHING: MODELING 
AND SIMULATION 

4.1. Introduction 

Taxis are usually pioneers to adopt emerging vehicle technologies. Electric vehicles 

have entered the taxi market in major cities around the globe (Kim et al, 2017; NYC TLC, 

2013; Tian et al., 2016; Zou et al., 2016). Ride-hailing companies, such as Uber and Lyft, 

have started testing autonomous vehicle taxis on public roads in the U.S. (Hawkins, 2017a, 

b). Waymo, an AV technology development company, combines the two vehicle 

technologies together and is using a fleet of electric and autonomous vehicles for its ride-

hailing taxi service in Arizona (Hawkins, 2018). There is a trend that more EAVs will hit 

road for future mobility services. 

EAV taxis have significant advantages over current taxis and ride-hailing taxis. 

Current taxis usually cruise on the streets and search for customers by chance. Ride-hailing 

apps make the locations of customers available to drivers, but the customers may not be 

served by the best-matching taxis. A customer request is sent to multiple nearby drivers. The 

customer will be picked up by the fastest driver to accept the request, but the pickup distance 

might not be the shortest. By contrast, EAV taxis can be controlled by a central system that 

has access to customer information, e.g. locations, trip distance, and waiting time, and taxi 

information, e.g. locations, status, and battery state-of-charge. EAV taxis can operate in a 

collaborative manner based on the customer and taxi information and potentially improve 

operational efficiency and customer satisfaction. EAV taxis can work without taking a rest. 

The fleet size of EAV taxis can be dynamic based on customers’ demand, while the number 

of working current taxis or ride-hailing taxis is less controllable. EAV taxis reduce tailpipe 
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emissions and save fuel expenditures. Charging can be better coordinated through vehicle-to-

vehicle and vehicle-to-infrastructure communications so as to alleviate range anxiety. 

Adopting EAVs for different kinds of mobility services have been discussed in a few 

previous works. Chen et al. (2016) simulated a fleet of shared EAVs that follow agent-based 

rules of driving and charging. They found that one shared EAV is able to replace 3.7–6.8 

private vehicles. Kang et al. (2017) designed an EAV sharing system and presented an 

optimization framework to determine the fleet size, charging infrastructure, vehicle 

assignment, and service fee. Jäger et al. (2017) focused on the agent-based simulation 

approach for a shared EAV on-demand mobility system. It was found that a shared EAV fleet 

is able to provide both high service level and vehicle utilization. Iacobucci et al. (2018) 

modeled the operations of EAVs in the one-way car sharing service in Tokyo, Japan. The 

results showed that the EAV car sharing can provide the same level of transport service as 

private cars, while the fleet size can reduce by 86%-90%. These studies all focused on the 

high operational efficiency of EAVs in the shared mobility services, and the core of high 

efficiency is vehicle dispatch. 

The vehicle dispatch problems in mobility services have been studied by various 

methods. The first and simplest one is the nearest vehicle dispatch method—dispatching the 

vehicle that is geographically the nearest to a customer. This method was adopted by Liao 

(2003), Jung and Jayakrishnan (2014), and Hyland and Mahmassani (2018). Although 

dispatching the nearest vehicle is simple, it can be used as the base scenario to compare with 

other complex models. Second, queueing theory with the principle of first-come-first-served. 

The first customer that joins the waiting list will be picked up first, as seen in Zhang and 

Pavone (2016), and Jäger et al. (2017). Third, optimization models were formulated to solve 
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the dispatch problems with different objectives. Qu et al. (2014) built a recommender system 

that provides taxi drivers with optimal driving route to maximize driver profits. Similarly, 

Sheppard et al. (2017) aimed at maximizing the profits of an EAV fleet, and Lu et al. (2018) 

aimed at minimizing the total operating cost of a taxi fleet that serves advance reservations. 

Miao et al. (2016) focused on reducing taxi idle travel distance while maintaining service 

quality. Ma et al. (2017) designed an AV sharing and reservation model that optimally 

schedules AVs to serve the maximum number of customers. The AV taxi dispatch strategies 

in Hyland and Mahmassani (2018) were to minimize the total pickup distance when multiple 

requests enter the system. Zhang et al. (2017) formulated the ride-hailing vehicle assignment 

as a combinatorial optimization problem, which aims to maximize the global success rate of 

order acceptance. Korolko et al. (2018) formulated an integer program to match ride-hailing 

vehicles and passengers. The objective is to maximize total matching rewards that are 

arbitrarily defined. The fourth and emerging method is machine learning. Wen et al. (2017) 

proposed a reinforcement learning approach that adopts a deep Q-network to adaptively 

move idle vehicles to high-demand areas in a shared on-demand mobility system. Xu et al. 

(2018) also used reinforcement learning to solve a large-scale vehicle dispatch problem 

confronted by the ride-hailing company DiDi. 

This chapter studies the potential of replacing current taxis with EAVs, especially the 

dispatch strategies of EAV taxis. We first design an EAV taxi simulation framework that can 

uses different dispatch models. Then we propose an optimization dispatch model that aims at 

maximizing the total rewards of serving customers. By simulating the EAV taxi system 

dispatched by the optimization model, the data of optimal dispatch strategies are generated 

and used for training the neural network-based dispatch model. Finally, we evaluate and 



www.manaraa.com

47 

compare the performance of the current taxis and EAV taxis in terms of customer service and 

operational efficiency. 

4.2. Simulating EAV Taxi Operations 

This section designs a simulation framework for the operations of EAV taxis. The 

simulation process is illustrated in Figure 4.1. A fleet of EAV taxis is initialized at the 

beginning of a day. The initial locations of the taxis could be drawn from real-world taxi 

operation data. The initial SOC is set randomly between 10% and 100%. Assume the taxi 

electric range is 200 miles and the electricity consumption rate is 0.3 kWh/mile (U.S. EPA, 

2017). There are 5 status of an EAV taxi in the simulation—waiting, called, occupied, going 

to charging stations, and charging. The initial status is waiting, meaning that EAV taxis park 

somewhere and wait for picking up customers. At a time step 𝑇𝑇, we denote the set of 

available taxis as 𝐼𝐼 and the set of customer requests as 𝐽𝐽. The available taxis could be the 

ones that are waiting or at the ending of charging (with ≥80% SOC). The customer requests 

consist of the new ones that are just come in at the time step 𝑇𝑇 as well as the unserved ones 

from the previous time steps. Assume the customers’ maximum waiting time is 15 minutes; 

otherwise, the customers will stop requesting a taxi. The simulation uses a dispatch model to 

match a taxi 𝑖𝑖 ∈ 𝐼𝐼 and a customer request 𝑗𝑗 ∈ 𝐽𝐽. EAV taxis keep waiting or charging if not 

dispatched. If an EAV taxi gets dispatched, the status changes to called—the taxi goes to 

pick up the customer, and then occupied—the taxi is occupied by the customer. After 

dropping off the customer at the destination, the EAV taxi checks whether charging is 

needed. If battery SOC is higher than or equal to 10%, the taxi keeps waiting near the drop-

off location for the next customer. If the battery SOC is less than 10%, the taxi goes to the 

nearest charging station and start charging. Once the SOC reaches 80%, the taxi becomes 
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available again for picking up new customers. If the taxi is not dispatched until the end of 

charging, it keep waiting near the charging station for incoming requests. The simulation 

uses 1 minute as the time interval, so the dispatch model is applied 1440 times per day. Taxi 

status and activities are updated and recorded simultaneously. A customer’s waiting time 

increases by 1 minute if not accepted by any taxi at a time step. 

 

Figure 4.1  The process of simulating EAV taxi operations. 

We use the NYC taxi trip data in the year of 2013 (Donovan and Work, 2016) to run 

the simulation. There are some additional explanations to the simulation. First, we use the 

locations of the expanded charging station networks of NYC showed in Section 3.3.1. We 

assume 50 kW fast chargers at all stations, as fast chargers are expected to be prevalent in the 

era of self-driving. Second, we use Equation 2-1 to estimate the travel distance of non-
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occupied trips, because only occupied trip distance is recorded in the NYC taxi trip data. 

Third, taxis wait for new customer requests near the drop-off locations or charging stations. It 

is possible that taxis cannot park there for a long time and need to relocate, but we ignore the 

cruising distance for simplicity. Fourth, customers can only be served by EAV taxis, 

excluding other transportation services. 

4.3. EAV Taxi Dispatch Models 

4.3.1. Optimization Dispatch Model 

At a time step 𝑇𝑇, there are 𝐼𝐼 available taxis and 𝐽𝐽 customer requests. The 

optimization-based dispatch model decides which EAV taxi 𝑖𝑖 ∈ 𝐼𝐼 should pick up which 

customer request 𝑗𝑗 ∈ 𝐽𝐽. The objective is to maximize total rewards collected from serving the 

𝐽𝐽 customers. The optimization model is constraint by customer waiting time, taxi-customer 

distance, and taxi battery range. To formulate the dispatch model, we first define the 

parameters as follows. 

𝑅𝑅𝑖𝑖: Remaining range of taxi 𝑖𝑖, ∀𝑖𝑖 (mile); 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚: Maximum pickup travel time (min); 

𝐷𝐷𝑗𝑗𝑐𝑐: Trip distance of customer request 𝑗𝑗, ∀𝑗𝑗 (mile); 

𝑇𝑇𝑗𝑗𝑤𝑤: Waiting time of customer request 𝑗𝑗, ∀𝑗𝑗, that is the time that the customer has waited for 

being accepted by a taxi (min); 

𝐷𝐷𝑖𝑖,𝑗𝑗
𝑝𝑝 : Pickup travel distance for taxi 𝑖𝑖 and customer request 𝑗𝑗, ∀𝑖𝑖, 𝑗𝑗 (mile), calculated based on 

the GPS locations of taxi 𝑖𝑖 and customer request 𝑗𝑗; 

𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝 : Pickup travel time for taxi 𝑖𝑖 and customer request 𝑗𝑗, ∀𝑖𝑖, 𝑗𝑗 (min), calculated based on the 

pickup travel distance 𝐷𝐷𝑖𝑖,𝑗𝑗
𝑝𝑝  and travel speed; 

𝑟𝑟𝑖𝑖,𝑗𝑗: Rewards if taxi 𝑖𝑖 picks up customer request 𝑗𝑗. 
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The EAV taxi dispatch problem is formulated as an integer linear programming (ILP) 

model. The binary decision variables are 𝑥𝑥𝑖𝑖,𝑗𝑗. 𝑥𝑥𝑖𝑖,𝑗𝑗 equals 1 when taxi 𝑖𝑖 is assigned to request 

𝑗𝑗. The objective function is defined in Equation 4-1, which maximizes the total rewards 

collected from picking up customer requests 𝐽𝐽. 

max ∑ ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖  (4-1) 

subject to 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑗𝑗 ≤ 1,     ∀𝑖𝑖 (4-2) 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑖𝑖 ≤ 1,    ∀𝑗𝑗 (4-3) 

�𝑅𝑅𝑖𝑖 − 𝐷𝐷𝑖𝑖,𝑗𝑗
𝑝𝑝 − 𝐷𝐷𝑗𝑗𝑐𝑐� ∙ 𝑥𝑥𝑖𝑖,𝑗𝑗 ≥ 0,    ∀𝑖𝑖, 𝑗𝑗 (4-4) 

�𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝 � ∙ 𝑥𝑥𝑖𝑖,𝑗𝑗 ≥ 0,    ∀𝑖𝑖, 𝑗𝑗 (4-5) 

𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ {0, 1},    ∀𝑖𝑖, 𝑗𝑗 (4-6) 

We define the reward 𝑟𝑟𝑖𝑖,𝑗𝑗 of dispatching taxi 𝑖𝑖 to customer 𝑗𝑗 in Equation 4-7, where 𝑀𝑀 

is a sufficiently large number. The reward decreases as the pickup travel time 𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝  becomes 

longer. The customer’s waiting time 𝑇𝑇𝑗𝑗𝑤𝑤 acts as the level of emergency that the he/she needs 

to be picked up. Our optimization model gives higher priority of dispatching taxis to the 

customers who have waited for longer time. For example, when two customer requests have 

the same travel time to a taxi, the model will decide to assign the taxi to the customer with 

longer waiting time due to the reward is higher. Many previous optimization models did not 

consider the waiting time of customers (Hyland and Mahmassani, 2018; Lu et al., 2018; Ma 

et al., 2017; Miao et al., 2016; Qu et al., 2014; Sheppard et al., 2017); thus taxi dispatching is 

not very fair to these customers, especially during rush hours. 

𝑟𝑟𝑖𝑖,𝑗𝑗 = 𝑀𝑀 − 𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝 + 𝑇𝑇𝑗𝑗𝑤𝑤 (4-7) 
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The objective of optimal dispatch is subjected to the following constraints. Each taxi 

will serve at most one customer request, and each customer request will be served by at most 

one taxi, as shown by the constraint sets 4-2 and 4-3, respectively. Dispatching an EAV taxi 

is also subjected to the taxi’s remaining range. If the remaining range of taxi 𝑖𝑖 is not enough 

for picking up customer request 𝑗𝑗 and dropping off the customer at the destination, taxi 𝑖𝑖 will 

not be assigned to the customer. This constraint set is showed as 4-4. The constraint set 4-5 

avoids that taxis travel long distance to pick up customers. The pickup travel time should be 

no more than the maximum pickup time 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 (assumed as 30 minutes). The constraint set 4-

6 requires the decision variables to be binary. 

4.3.2. Neural Network-Based Dispatch Model 

The major drawback of the optimization-based dispatch model is that solving the ILP 

is computationally intensive, especially when a large amount of taxis and customer requests 

are involved. It is desired to develop both fast and accurate dispatch models. Neural networks 

could take long time to train, but when it calculates the outputs, the algorithms are simple. 

Therefore, the neural network-based models could be more efficient in dispatching EAV 

taxis than solving the ILP model of the same size. Also, neural networks can be more 

powerful in classification than other shallow models, such as logistic regression. 

When a customer is requesting for a taxi, his/her current location, destination, trip 

distance, trip travel time, and waiting time are available to the central dispatch system. The 

dispatch system finds all the available taxis for this request. For each pair of the request and 

taxi (𝑖𝑖-𝑗𝑗), there are 11 input variables to the neural network dispatch model, as listed in Table 

4.1. The 11 input variables include the taxis status (location and remaining range), the 

request status (location, trip distance, trip travel time, and waiting time), the spatial and 
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temporal relationship between taxi 𝑖𝑖 and request 𝑗𝑗, and the current time. The neural network 

dispatch model calculates the probability of dispatching taxi 𝑖𝑖 to request 𝑗𝑗. 

Table 4.1  Inputs of the neural network-based dispatch model. 

Input variable Description 
𝑁𝑁1  The GPS longitude of taxi 𝑖𝑖. 
𝑁𝑁2  The GPS latitude of taxi 𝑖𝑖. 
𝑁𝑁3  The remaining range of taxi 𝑖𝑖 (mile). 
𝑁𝑁4  The GPS longitude of customer request 𝑗𝑗. 
𝑁𝑁5  The GPS latitude of customer request 𝑗𝑗. 
𝑁𝑁6  The trip distance of customer request 𝑗𝑗 (mile). 
𝑁𝑁7  The trip travel time of customer request 𝑗𝑗 (min). 
𝑁𝑁8  The waiting time of customer request 𝑗𝑗 (min). 
𝑁𝑁9  The pickup travel distance from taxi 𝑖𝑖 to customer request 𝑗𝑗 (mile). 
𝑁𝑁10  The pickup travel time from taxi 𝑖𝑖 to customer request 𝑗𝑗 (min). 
𝑁𝑁11  Timestamp, the minutes elapsed relative to the beginning of the day. 

 

The neural network consists of 1 input layer (11 neurons), 3 hidden layers (128, 64, 

and 8 neurons, respectively), and 1 output layer, as shown in Figure 4.2. The 3 hidden layers 

are activated by the ReLU function. We implement dropout with the drop rate of 0.2 

following the first and second hidden layers to prevent overfitting. The output layer uses the 

sigmoid function to output the probability of dispatching taxi 𝑖𝑖 to request 𝑗𝑗. 

 

Figure 4.2  Architecture of the neural network-based dispatch model. 
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The output probability of the neural network alone is not enough to determine which 

taxi should be dispatched to which request. Since a taxi is possible to pick up any nearby 

requests, and a request could be served by any nearby taxis, there are overlaps among the 

taxi-request pairs. This problem can be illustrated in Figure 4.3. For example, the 

probabilities that taxi 3 is dispatched to request 1, 2, and 3 will all be calculated by the neural 

network, but taxi 3 can pick up only one request. 

To solve the overlapping problem, we add an algorithm (see Algorithm 4.1) following 

the neural network outputs to make the final dispatch decisions. First, find the largest 

dispatching probability from the outputs. If the largest probability is smaller than 0.5, stop 

dispatching taxis. If the largest probability is larger than or equal to 0.5, find the 

corresponding pair of taxi 𝑖𝑖 and request 𝑗𝑗. Dispatch the taxi 𝑖𝑖 to pick up the request 𝑗𝑗. Then 

remove all the taxi-request pairs that have taxi 𝑖𝑖 or request 𝑗𝑗. Iterate this process until all taxis 

in 𝐼𝐼 have been dispatched or all customer requests in 𝐽𝐽 can be served. 

 

Figure 4.3  The overlaps among taxi-request pairs. 
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Algorithm 4.1 Make dispatch decisions following the neural network outputs 
Input: available taxis 𝐼𝐼, 
            customer request 𝐽𝐽, 
            taxi-request pairs 𝑖𝑖-𝑗𝑗 (𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽), 
            probabilities of dispatching 𝑝𝑝𝑖𝑖,𝑗𝑗 (𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽) 
Output: which taxi 𝑖𝑖 should be dispatched to pick up which customer request 𝑗𝑗  
1: while 𝐼𝐼 ≠ ∅ and 𝐽𝐽 ≠ ∅ do 
2:     find the largest probability of dispatching 𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚 
3:     if 𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚 ≥ 0.5 then 
4:         Find the corresponding 𝑖𝑖-𝑗𝑗 pair     
5:         Dispatch the taxi 𝑖𝑖 to the request 𝑗𝑗 
6:         Remove all the taxi-request pairs that have 𝑖𝑖 or 𝑗𝑗 and the dispatching probabilities 
7:         𝐼𝐼 ← 𝐼𝐼 − 𝑖𝑖 
8:         𝐽𝐽 ← 𝐽𝐽 − 𝑗𝑗 
9:     else then 
10:         break 
11:     end if 
12: end while 

 

4.3.3. Training Neural Network-Based Dispatch Model 

We let the neural network-based dispatch model learn the optimal dispatch decisions 

made by the optimization dispatch model. We select 3 consecutive days from September 10, 

2013 00:00 to September 12, 2013 23:59 to simulate the EAV taxi operations using the 

optimization dispatch model. In order to achieve faster computation, we randomly draw 5% 

of taxis and 5% of served customer requests from the 3-day dataset to run the simulation. 

Previous works that simulated fleet operations often draw a proportion of all trip demand. 

For example, Chen et al. (2016) used 10% of all trip demand in a metropolitan area to 

simulate a fleet of shared EAVs, and Fagnant et al. (2015) simulated shared AVs that serve 

5% of all vehicle trips on a 5% capacity network. 

At each iteration of the simulation, the optimal dispatch decisions are made and the 

dispatch data (as listed in Table 4.1) of each taxi-request pair are generated. If taxi 𝑖𝑖 is 

dispatched to request 𝑗𝑗, the dispatch decision is labeled as 1; otherwise, labeled as 0. The 
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optimal dispatch decisions generated during the 3-day simulation are used for training the 

neural network-based dispatch model. 

Since the optimization-based dispatch model does not allow taxis to pick up the 

customers who are far away, we remove the dispatch data in which the taxi-to-customer 

travel time is beyond 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 and obtain about 10 million data samples. 90% of the data are 

used for training the neural network and 10% for validating. Only 1% of the training data are 

labeled as 1. We use up-sampling method to keep balance of the classes so the numbers of 

major and minor classes in the training data are equal. 

We use the Adam optimizer and the binary cross entropy loss function to train the 

neural network for 100 epochs. The batch size is 256. The training and validation loss are 

shown in Figure 4.4. The validation losses do not show signs of overfitting. After training 

and validating for 100 epochs, the validation loss is 0.1888 and the validation accuracy is 

0.9075. The recall on the validation dataset is 0.93, indicating that it is very unlikely to 

mistakenly predict a taxi-customer pair that should be matched as not matched. The neural 

network-based dispatch model is able to learn most of the optimal dispatch strategies. 

 

Figure 4.4  Training and validation losses. 



www.manaraa.com

56 

4.4. Results 

To make comparisons to the performance of the neural network-based dispatch model 

and the optimization-based dispatch model, we select another day October 16, 2013 for 

simulating EAV taxis dispatched by the 2 models, respectively. We draw 5% of taxis (650 

taxis) and the customer requests they have served as the samples from this day’s dataset. We 

again generate optimal dispatch data for this day and use them as an independent testing 

dataset. Implementing the neural network dispatch model to the testing dataset, the model 

accuracy is 0.8653 and the recall is 0.92. Logistic regression has testing accuracy of 0.8191 

and recall of 0.87, which is less powerful to generate optimal dispatch solutions. 

4.4.1. Performance of Dispatch Models 

The optimization and the neural network dispatch models have similar performance 

in term of customer service, making EAV taxis serve 99.3% and 99.2% of the customer 

requests, respectively. Less than 1% fail to request taxis within the allowed waiting time. By 

contrast, using the logistic regression model makes 9.5% of customers fail to request taxis. 

Taxi pickup time is the travel time to the customer request once the taxi is dispatched. Under 

the optimization model, 76% and 92% of served customers can be picked up within 5 and 10 

minutes, respectively, while it is 83% and 93% under the neural network model. In addition, 

over 90% of all customer requests can be immediately accepted by taxis under the 2 dispatch 

models. 

In terms of the performance of the EAV taxi fleet (seen in Table 4.2), the average 

travel distance of the EAV taxis that are dispatched by the neural network model is 130.4 

miles, which is 3% shorter than the optimally dispatched taxis. This is mainly due to the 

reduced empty travel distance. The average occupied trips and time spent for charging under 
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the two models are similar. The logistic regression model, by comparison, makes EAV taxis 

complete less occupied trips since 9.5% of customers cannot be picked up. 

Based on the above comparisons, it is found that the neural network model has learnt 

the optimal dispatch solutions and its performance is very close to the optimization model.  

Table 4.2  Performance of EAV taxi fleet under different dispatch models. 

 Optimization-based 
model 

Neural network-
based model 

Logistic regression-
based model 

Avg. occupied trips 36.2 36.1 33.0 
Avg. travel distance 
(mile) 

134.9 130.4 131.0 

Avg. empty travel 
distance (mile) 

34.1 29.8 39.6 

Avg. distance 
occupancy 

0.758 0.777 0.710 

Avg. time spent for 
charging (min) 

44.7 42.7 44.8 

 

4.4.2. Computation Time of Dispatch Models 

The simulation of EAV taxi operations using different dispatch models runs on a 

workstation with Intel Xeon E5-1620 CPU and 16GB RAM. The optimization-based 

dispatch models are solved by Gurobi 8.0.1. We record the time spent for obtaining dispatch 

solutions at each time step during the simulation. Figure 4.5 shows the histograms of the 

computational time. The optimization dispatch model takes 0~120 seconds to solve; the 

average computation time is 42.9 seconds. The neural network is much faster to obtain 

dispatch solutions. The average computation time is 9.9 seconds, and there are 95% chances 

it is within 15 seconds. 
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Figure 4.5  Histograms of computation time of different dispatch models. 

We’ve also compared the average computation time with 95% confidence interval 

using different taxi sample sizes, as seen in Figure 4.6. When the models are dispatching 

EAV taxis of a larger fleet size, the average computation time of the optimization model 

increases much more significantly than the neural network model. In Figure 4.7, we use the 2 

models to dispatch all taxis at different times of the day, respectively. It is found that the 

neural network dispatch model is still much more efficient to make dispatch decisions. 

Overall, since the neural network model has near-optimal dispatch solutions and is much 

faster to compute, it is more preferable for real-time EAV taxi dispatching. 

 

Figure 4.6  Average computation time using different taxi sample sizes. 
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Figure 4.7  Computation time of different instances using all taxis. 

4.4.3. Improvements to Taxi Operational Efficiency  

The operational efficiency of current taxis can be improved by EAV taxis dispatched 

by the neural network-based model, in terms of total travel distance, empty travel distance, 

and travel distance occupancy, as shown in Figures 4.8, 4.9 and 4.10. 

On the simulated day, the sampled current taxis travelled 157.8 miles on average to 

serve the customers. The travel distance distribution is more left-skewed. If the current taxis 

are replaced by EAV taxis that are dispatched by the neural network model, the average 

travel distance can reduce by 17% to 130.4 miles. EAV taxis’ shorter travel distance is 

mainly due to the declined empty distance. The average empty travel distance decreases from 

52.6 miles to 29.8 miles, a 43% reduction. EAV taxis also improve distance occupancy, the 

ratio of the travel distance occupied with customers over the total travel distance. The 

average distance occupancy increases from 67% to 78%, which indicates lower operation 

cost for the EAV taxis. 
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Figure 4.8  Histograms of total travel distance for current taxis and EAV taxis. 

 

Figure 4.9  Histograms of empty travel distance for current taxis and EAV taxis. 

 

Figure 4.10  Histograms of travel distance occupancy for current taxis and EAV taxis. 
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4.4.4. Reduction in Fleet Size 

EAV taxis have the potential to operate with fewer vehicles. We experiment with the 

fleet size of EAV taxis that are dispatched by the neural network model. The level of service 

and operational efficiency are shown in Table 4.3. EAV taxis become busier with smaller 

fleet size, in terms of more occupied trips, longer travel distance, and longer time spent for 

charging. The percentage of unserved requests increases from 0.7% to 2.1%. Over 80% of 

served customers can be picked up within 5 minutes, no matter what the fleet size is. The 

percentage of immediately accepted requests drops relatively faster, but the EAV taxis of 

80% of fleet size can still let 75% of customer requests be accepted without waiting. 

Table 4.3  Level of service and operational efficiency of EAV taxis of different fleet sizes. 

 650 EAVs 618 EAVs 585 EAVs 553 EAVs 520 EAVs 
Reduction in fleet size 0% 5% 10% 15% 20% 
Unserved requests 0.8% 0.9% 1.0% 1.3% 2.1% 
Taxi pickup time ≤5 min 83% 82% 82% 81% 82% 
Requests accepted 
immediately 

93% 90% 87% 83% 75% 

Avg. occupied trips 36.1 38.0 40.1 42.3 44.6 
Avg. travel distance (mile) 130.4 137.8 146.2 154.7 163.1 
Avg. empty travel 
distance (mile) 

29.8 32.1 34.9 37.5 39.9 

Reduction in fleet travel 
distance 

17.4% 17.0% 16.6% 16.6% 17.3% 

Avg. time spent for 
charging (min) 

42.7 44.7 48.8 53.1 54.1 

 

When the fleet size reduces by 15%, an EAV taxi travels 154.7 miles daily on 

average, which is close to the current taxi. However, the average empty travel distance drops 

by 15.1 miles compared to the current taxi fleet, and 16.6% of fleet total travel distance can 

be saved. Therefore, EAV taxis can reduce fleet size by 15% while maintaining comparable 
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level of service and traveling less miles. In other words, 1 EAV taxi can replace about 1.2 

current taxis. 

4.5. Conclusions and Discussions 

This chapter studies the dispatching problems of EAV taxis. We first design a 

simulation framework that can use different dispatch models for the operations of EAV taxis. 

Then we propose two EAV taxi dispatch models—the optimization-based model, which aims 

at maximizing total rewards collected from serving customers, and the neural network-based 

model, which learns the optimal dispatch strategies from the optimization model. Three 

consecutive days in 2013 are randomly selected for simulating the operations of EAV taxis 

that are dispatched by the optimization model in New York City. The data of optimal 

dispatch strategies are generated during the simulation process. The neural network dispatch 

model is trained using the generated data, in order to learn the optimal dispatch solutions. 

We randomly choose another day for simulation to compare the performance of the 

two dispatch models. The results show that neural network dispatch model has learnt the 

optimal dispatch strategies and has very close performance with the optimization dispatch 

model in terms of customer service and taxi operational efficiency. In addition, the neural 

network model is much faster to make dispatch decisions, which is more preferable for real-

time EAV taxi dispatching. 

The EAV taxis dispatched by the neural network model can improve the operational 

efficiency of current taxis. On average, EAV taxis can reduce travel distance by 17%, reduce 

empty travel distance by 43%, and increase distance occupancy from 67% to 78%, while 

serving 99.2% of customer requests. By experimenting with the EAV taxi fleet size, it is 

found that EAV taxis can reduce fleet size by 15% while maintaining comparable level of 

service with the current taxi fleet and traveling shorter distance. 
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There are some limitations of this research. First, the simulation framework adopts 

deterministic charging rules. Future research can schedule EAV taxi charging ahead of time. 

For example, let taxi charge during low-demand hours to prepare for serving advanced peak 

demand. Second, idle EAV taxis do not relocate in the simulation. Relocating EAV taxis 

from low-demand areas to high-demand areas, however, can potentially save customers’ 

waiting time. This research focuses on the dispatch problems of EAV taxis. More complex 

charging and relocation models will be studied in future research. Third, we sample only 5% 

of taxis and customer requests to run simulation due to limited computation power. In 

practice, the size of dispatching problems could be much bigger. We will draw more samples 

and generate more dispatch data for training the neural network model if more computation 

resources are available. 
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CHAPTER 5.    MODELING CHARGING BEHAVIOR OF BATTERY ELECTRIC 
VEHICLE DRIVERS: A CUMULATIVE PROSPECT THRORY BASED 

APPROACH 

5.1. Introduction 

Promoting the use of battery electric vehicles is regarded as an effective way to 

reduce emissions and dependence on petroleum. Due to the limited battery range and 

insufficient charging infrastructure, BEV drivers need to pay attention to their battery state-

of-charge and make proper charging plans to avoid driving with low SOC and experiencing 

the “range anxiety” phenomenon (Neubauer and Wood, 2014). Better understanding of BEV 

drivers’ charging behavior, such as determining the SOC when charging occurs, and choices 

of charging time and location (home, workplace, or public), will provide guidance to BEV 

use, charging infrastructure planning, and power grid capacity expansion.  

The charging decisions of electric vehicle drivers have been modeled using simple 

and deterministic rules. For example, Kang and Recker (2009), Darabi and Ferdowsi (2011), 

and Kongthong and Dechanupapritta (2014) assumed that only home charging took place. 

Dong and Lin (2012) quantified the benefit and cost of a charge and assumed drivers decided 

to charge only if the benefit-to-cost ratio was larger than one. Hu et al. (2018) and Yang et al. 

(2016) assumed BEV taxi drivers would go to charging stations only if the SOC drops below 

a certain level. These papers help us understand the travel and charging patterns of EVs in 

the early adopter stage. However, these assumptions may not reflect realistic behaviors 

because charging behavior is not always deterministic and can be influenced by various 

factors. To overcome these limitations, random utility theory (RUT) was introduced to 

describe drivers’ decision-making about charging while operating under uncertain conditions 

and randomness. For example, Daina et al. (2017) developed a joint random utility model of 
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charging and activity-travel timing choices that takes various utilities across individuals into 

account. To incorporate heterogeneity among decision-makers, mixed logit choice models 

with random coefficients were developed to describe the decision to charge at the end of each 

trip (Zoepf et al., 2013), fast charging station choices (Sun et al., 2016), and charge timing 

choices (Langbroek et al., 2017).  

One of the basic assumptions of RUT is that individuals are rational decision-makers 

who maximize utility relative to their choices. However, the assumption that decision-makers 

are rational has long been challenged (Kahneman and Tversky, 1979; Durbach and Stewart, 

2012; Ilin and Rogova, 2017). In transportation research, irrational behaviors have been 

observed and modeled for departure time choice (Mahmassani and Chang 1986, Schwanen 

and Ettema 2009) and route choice (Zhou et al. 2014). 

To take the limited rationality in decision-making into account, cumulative prospect 

theory was introduced. CPT is a behavioral science theory that describes the extent of 

decision-makers’ attitudes and preference toward risk (Kahneman and Tversky, 1979; 

Tversky and Kahneman, 1992). The theory proposes that decision-makers (1) are risk-averse 

when outcomes are framed as gains relative to a reference point, and risk-seeking when 

outcomes are framed as losses; (2) are more sensitive to losses than gains; and (3) tend to 

apply too much weight to unlikely outcomes and too little weight to likely outcomes. CPT 

has been applied in many transportation research fields, such as route choice (Avineri and 

Bovy, 2008; de Luca and Di Pace, 2015; Gao et al., 2010; Wang and Xu, 2011; Xu et al., 

2011; Yang and Jiang, 2014; Zhang et al., 2018; Zhou et al., 2014), commuter departure time 

choice (Senbil and Kitamura, 2004; Schwanen and Ettema, 2009), public-transport users’ 

mode choice at transfer stations (Ceder et al., 2013), use of the high-occupancy-vehicle lane 
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(Chow et al., 2010), classification of the risk attitude of travelers (Yang et al., 2015), and 

congestion pricing (Liu et al., 2010). These studies all found success in using CPT to 

describe people’s limited rationality and risk attitudes when making decisions. Among these 

works, Schwanen and Ettema (2009), Gao et al. (2010), Xu et al. (2011), Wang and Xu 

(2011), and Yang and Jiang (2014) compared CPT with utility theory expectations and 

showed that CPT is a better approach to modeling travelers’ behavior. 

When driving a BEV, there are no significant perceivable gains if the trip distance 

falls below the BEV range, but if the distance unexpectedly exceeds the range and the driver 

is caught on the road or forced to detour to reach a public charger, the losses are perceivably 

large. Moreover, BEV drivers tend to recharge at high battery SOC to avoid range anxiety. 

Therefore, the charging behavior of BEV drivers is in accordance with the rationale of CPT. 

This chapter proposes an innovative modeling framework for the charging behavior of BEV 

drivers based on CPT. 

By applying the CPT-based charging behavior model, this chapter examines the 

collective effects of nationwide BEV charging under a mature market. A BEV mass-market 

scenario is constructed based on the 2017 National Household Travel Survey. By aggregating 

individuals’ charging behavior, we can examine the distribution of battery SOC at the start of 

charging events, charging timing and location choices, and charging power demand profile. 

Sensitivity analyses are conducted to explore the influences of BEV drivers’ attitudes toward 

risk on charging behavior and the influences of the public charger network coverage on the 

power grid. 

5.2. Methodology 

CPT describes an individual’s decision-making process when confronted with 

uncertain outcomes and risks. The charging behavior modeling framework consists of two 
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phases—editing and evaluation—as shown in Figure 5.1. Based on the dwell and trip 

characteristics of a BEV, the editing phase confirms the outcomes of charging or not 

charging by the cost functions. The outcomes are converted to values (either gains or losses) 

relative to a reference point. Then the model considers the distribution of outcomes and 

estimates the corresponding probabilities. Weighting functions convert these probabilities 

into decision weights. In the evaluation phase, the prospects of charging or not charging are 

computed, and BEV drivers make charging decisions based on these prospects. The battery 

SOC and travel distance to the next charger are updated based on the charging decision. The 

following sections describe the modeling framework in detail. All the parameters of the 

modeling framework and their values are listed in the Appendix. 

 

Figure 5.1  CPT-based charging behavior modeling framework. 
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5.2.1. Cost Functions 

BEV drivers make a charging decision when a charger is available at the dwell 

location. The decision could be affected by the current SOC (the remaining range over full 

battery range, in %), charger power, charging cost, distance to the next charger, dwell time, 

dwell location, etc. The charging decision has a direct impact on the remaining range at the 

next charger (Equation 5-1). 

𝑟𝑟𝑛𝑛 = 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑖𝑖 − 𝑜𝑜 (5-1) 

where  

𝑟𝑟𝑛𝑛 is the remaining range at the next charger (mile); 

𝑟𝑟𝑐𝑐 is the current remaining range (mile); 

𝑟𝑟𝑖𝑖 is the range increase (mile); and 

𝑜𝑜 is the travel distance to the next charger (mile). 

If the driver decides to charge the vehicle, the range increase is calculated as in 

Equation 5-2; otherwise, it is 0. Note that range increase should not surpass BEV full range. 

𝑟𝑟𝑖𝑖 = min �𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑐𝑐, 𝑐𝑐𝑑𝑑×𝑃𝑃
𝑒𝑒𝑟𝑟
� (5-2) 

where 

𝑟𝑟𝑓𝑓 is BEV’s full range (mile); 

𝑑𝑑𝑎𝑎 is dwell time (h); 

𝑃𝑃 is charger power (kW); and  

𝑒𝑒𝑟𝑟 is electricity consumption rate (kWh/mile), assumed 0.3 kWh/mile (U.S. EPA, 2017). 

The remaining range at the next charger will result in different outcomes. Franke and 

Krems (2013) conducted a survey on 40 drivers of electric MINI Coopers which have a 104-

mile range under normal driving conditions. They found that these drivers feel comfortable 
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when the battery SOC is above 20%~25%. However, when SOC drops below that comfort 

range, the drivers become anxious about using up electricity. This range anxiety phenomenon 

leads to unpleasant driving experiences. Therefore, this research considers 20 miles as the 

comfortable range threshold (𝑟𝑟𝑎𝑎). 

If a driver decides to charge the vehicle and arrive at the next charger with 20 miles 

or more range remaining, the costs for the driver consist of the charging hassle cost (𝑐𝑐ℎ), 

charging service cost (𝑐𝑐𝑠𝑠), and electricity cost (𝑐𝑐𝑒𝑒). Kurani et al. (2009) and Axsen and 

Kurani (2009) found that BEV drivers perceived that recharging was not worth the hassle 

under certain circumstances. The value of time (VOT) is assumed as $13.6/h for personal 

local travel and $25.4/h for business local travel (U.S. DOT, 2016). Plugging and unplugging 

may take around 2 min (Dong and Lin, 2012; Wu et al., 2015; Wu et al., 2014), so we 

assume the charging hassle cost is $0.45 if the trip is out of personal purpose and $0.85 if the 

trip is out of business purpose. In addition, users typically pay a one-time service fee or a 

monthly membership fee to get access to public fast chargers. The charging service cost (𝑐𝑐𝑠𝑠) 

is assumed as $5 per charge (Francfort, 2015). The driver also needs to pay for the electricity, 

as calculated in Equation 5-3. 

𝑐𝑐𝑒𝑒 = 𝑟𝑟𝑖𝑖 × 𝑒𝑒𝑟𝑟 × 𝑒𝑒𝑐𝑐 (5-3) 

where 

𝑒𝑒𝑐𝑐 is the electricity price, assumed as $0.12/kWh (U.S. EIA, 2017). 

If the driver has not arrived at the next charger but the remaining range drops below 

the comfortable point, 𝑟𝑟𝑎𝑎, there is a psychological cost for the driver as he/she becomes 

increasingly anxious as the remaining range decreases. Thus, we assume the psychological 



www.manaraa.com

70 

cost increases linearly to the penalty cost (𝑐𝑐𝑝𝑝) as the remaining range drops to 0. 𝑐𝑐𝑝𝑝 equals 

$109, which is the U.S. national average car towing cost (Moor, 2016). 

Even though the driver has charged the vehicle, it is still possible that the vehicle will 

run out of electricity during the trip. When this happens, the driver has to pay for towing and 

travel to the destination by other means, such as taking a taxi. 

Therefore, the outcomes of charging can be represented by the cost function 𝐶𝐶1(𝑟𝑟𝑛𝑛) as 

below. 

𝐶𝐶1(𝑟𝑟𝑛𝑛) = �

−𝑐𝑐ℎ − 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑒𝑒 ,   𝑟𝑟𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎
−𝑐𝑐ℎ − 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑒𝑒 −

𝑟𝑟𝑎𝑎−𝑟𝑟𝑛𝑛
𝑟𝑟𝑎𝑎

× 𝑐𝑐𝑝𝑝,   0 ≤ 𝑟𝑟𝑛𝑛 < 𝑟𝑟𝑎𝑎
−𝑐𝑐ℎ − 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑒𝑒 − 𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑐𝑐 × |𝑟𝑟𝑛𝑛|,   𝑟𝑟𝑛𝑛 < 0

 (5-4) 

where 

𝑐𝑐𝑐𝑐 is the taxi rate ($/mile), assumed $2.51/mile based on the data published on 

TaxiFareFinder (2018). 

In contrast, the outcomes of not charging are represented by the cost function 𝐶𝐶2(𝑟𝑟𝑛𝑛) 

as shown in Equation 5-5. There is no charging cost, but the driver runs a higher risk of 

feeling range anxiety or becoming stranded. 

𝐶𝐶2(𝑟𝑟𝑛𝑛) = �

0,   𝑟𝑟𝑛𝑛 ≥ 𝑟𝑟𝑎𝑎
− 𝑟𝑟𝑎𝑎−𝑟𝑟𝑛𝑛

𝑟𝑟𝑎𝑎
× 𝑐𝑐𝑝𝑝,   0 ≤ 𝑟𝑟𝑛𝑛 < 𝑟𝑟𝑎𝑎

−𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑐𝑐 × |𝑟𝑟𝑛𝑛|,   𝑟𝑟𝑛𝑛 < 0
 (5-5) 

5.2.2. Reference Point and Value Function 

The outcomes at the next charging opportunity are determined by the cost functions 

𝐶𝐶1(𝑟𝑟𝑛𝑛) and 𝐶𝐶2(𝑟𝑟𝑛𝑛). The outcomes are framed as gains or losses when compared to a reference 

point (𝑐𝑐0). The reference point is defined as the cost of driving to the next charger, as shown 
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in Equation 5-6. The value function, shown in Equation 5-7 and Figure 5.2, considers gains 

and losses separately, and converts the outcomes to values for the decision-maker. 

𝑐𝑐0 = −𝑜𝑜 × 𝑒𝑒𝑟𝑟 × 𝑒𝑒𝑐𝑐 (5-6) 

𝑉𝑉(𝑐𝑐) = �
(𝑐𝑐 − 𝑐𝑐0)𝛼𝛼,   𝑐𝑐 ≥ 𝑐𝑐0

−𝜆𝜆(𝑐𝑐0 − 𝑐𝑐)𝛽𝛽 ,   𝑐𝑐 < 𝑐𝑐0
 (5-7) 

where 

𝛼𝛼 and 𝛽𝛽 are the risk preference parameters (0 < 𝛼𝛼,𝛽𝛽 < 1);  

and 𝜆𝜆 is the loss aversion parameter (𝜆𝜆 > 1). 

The value function exhibits risk-aversion over gains and risk-seeking over losses. 

Larger values of 𝛼𝛼 and 𝛽𝛽 indicate that people are more sensitive to risk. 𝜆𝜆 is larger than 1, 

which suggests that people are more sensitive to losses than gains. Larger values of 𝜆𝜆 

represent the increasing degree of sensitivity. 

 

Figure 5.2  Value function. 

5.2.3. Estimating Probabilities of Outcomes 

The outcomes encountered by BEV drivers are uncertain, because the remaining 

range at the next charger, denoted by 𝑟𝑟𝑛𝑛𝑘𝑘, is not deterministic. The real world BEV electricity 
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consumption can be affected by ambient temperature (Wang et al., 2017), driving speed 

(Wager et al., 2016; Yi and Shirk, 2018), road gradient (Liu et al., 2017b), and use of air-

conditioning (Liu et al., 2017a). Assume 𝑟𝑟𝑛𝑛𝑘𝑘 follows the normal distribution 

𝑟𝑟𝑛𝑛𝑘𝑘~𝑁𝑁(𝑟𝑟𝑛𝑛, (𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑛𝑛)2) (5-8) 

where 

𝑐𝑐𝑐𝑐 is the coefficient of variation.  

We use 𝑟𝑟𝑛𝑛 estimated by Equation 5-1 as the mean for the normal distribution, and 

𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑛𝑛 as the standard deviation. 𝑐𝑐𝑐𝑐 is 0.234 based on a FleetCarma dataset which includes 

travel activities of 436 2013/2014 Nissan Leafs in three U.S. states (California, Texas, and 

Maine) for about 7 months. The distance and electricity consumption of each trip are 

available. The average electricity consumption rate in a day is calculated as the ratio of the 

total daily electricity consumption to the total daily travel distance. The range is calculated as 

the battery capacity divided by the average electricity consumption rate. It was found that the 

mean and standard deviations of the LEAF’s range are 96 miles and 22.5 miles, respectively, 

so the coefficient of variation is 0.234. 

Note that 𝑟𝑟𝑛𝑛𝑘𝑘 follows a continuous distribution. To apply CPT, we convert the normal 

distribution into a discrete distribution that generates 10 possible outcomes of the remaining 

range at the next charger with the associated probabilities. First, we construct a confidence 

interval (𝛩𝛩) with a level of confidence of  𝑝𝑝%.  

𝑎𝑎 = 𝑟𝑟𝑛𝑛 − 𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑛𝑛 × 𝜙𝜙−1(0.5 + 0.5 × 𝑝𝑝%) (5-9) 

𝑏𝑏 = 𝑟𝑟𝑛𝑛 + 𝑐𝑐𝑐𝑐 × 𝑟𝑟𝑛𝑛 × 𝜙𝜙−1(0.5 + 0.5 × 𝑝𝑝%) (5-10) 

𝛩𝛩 = [𝑎𝑎, 𝑏𝑏] (5-11) 

where 
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𝜙𝜙(⋅) is the cumulative distribution function of standard normal distribution. 

Convert the normal distribution to a truncated normal distribution that lies within the 

confidence interval 𝛩𝛩. Divide 𝛩𝛩 into 10 equal intervals, denoted by ∆1,∆2, … ,∆10. 𝑟𝑟𝑛𝑛𝑘𝑘 serves 

as the median of interval ∆𝑘𝑘 (𝑘𝑘 = 1, 2, … , 10), and the corresponding probability 𝑝𝑝𝑘𝑘 is the 

probability that the remaining range falls in ∆𝑘𝑘. Note that 𝑝𝑝𝑘𝑘 is also the probability of the 

outcome 𝑐𝑐𝑘𝑘 associated with 𝑟𝑟𝑛𝑛𝑘𝑘. 

5.2.4. Weighting Functions 

CPT states that an event with a small possibility of occurring will generally be 

overestimated by decision-makers, whereas an event with a larger possibility of occurring 

will be underestimated, as illustrated in Figure 5.3. The cumulative decision weights 𝜋𝜋(𝑝𝑝) 

are defined in Equations 5-12 and 5-13 (Tversky and Kahneman, 1992). They are calculated 

based on the weighting functions 𝑒𝑒(𝑝𝑝), as seen in Equations 5-14 and 5-15, where the 

probabilities of gains and losses take different parameters, 𝛾𝛾 and 𝛿𝛿. The parameters 𝛾𝛾 and 𝛿𝛿 

indicate the extent of influence from overweighting and underweighting, and 0 < 𝛾𝛾, 𝛿𝛿 < 1. 

The smaller 𝛾𝛾 and 𝛿𝛿 result in a more curved weighting function. 

𝜋𝜋𝑖𝑖+(𝑝𝑝𝑖𝑖) = 𝑒𝑒+(𝑝𝑝𝑖𝑖 + ⋯+ 𝑝𝑝𝑛𝑛) − 𝑒𝑒+(𝑝𝑝𝑖𝑖+1 + ⋯+ 𝑝𝑝𝑛𝑛) for 0 ≤ 𝑖𝑖 < 𝑛𝑛 and 𝜋𝜋𝑛𝑛+(𝑝𝑝𝑛𝑛) =

𝑒𝑒+(𝑝𝑝𝑛𝑛) (5-12) 

𝜋𝜋𝑗𝑗−(𝑝𝑝𝑗𝑗) = 𝑒𝑒−�𝑝𝑝−𝑚𝑚 + ⋯+ 𝑝𝑝𝑗𝑗� − 𝑒𝑒−�𝑝𝑝−𝑚𝑚 + ⋯+ 𝑝𝑝𝑗𝑗−1� for −𝑚𝑚 ≤ 𝑗𝑗 < 0 and 𝜋𝜋−𝑚𝑚− (𝑝𝑝−𝑚𝑚) =

𝑒𝑒−(𝑝𝑝−𝑚𝑚) (5-13) 

𝑒𝑒+(𝑝𝑝𝑖𝑖) = 𝑝𝑝𝑖𝑖𝛾𝛾

[𝑝𝑝𝑖𝑖𝛾𝛾+(1−𝑝𝑝𝑖𝑖)𝛾𝛾]
1 𝛾𝛾�

 (5-14) 

𝑒𝑒−�𝑝𝑝𝑗𝑗� = 𝑝𝑝𝑗𝑗𝛿𝛿

[𝑝𝑝𝑗𝑗𝛿𝛿+(1−𝑝𝑝𝑗𝑗)𝛿𝛿]
1
𝛿𝛿�
 (5-15) 



www.manaraa.com

74 

 

Figure 5.3  Weighting functions. 

5.2.5. Charging Decision 

BEV drivers make charging decisions based on cumulative prospect values. The 

cumulative prospect values of charging and not charging are calculated based on Equation 5-

16. 

𝑈𝑈(𝑐𝑐,𝑝𝑝) = ∑ 𝜋𝜋𝑖𝑖+(𝑝𝑝𝑖𝑖)𝑉𝑉(𝑐𝑐𝑖𝑖)𝑛𝑛
𝑖𝑖=0 + ∑ 𝜋𝜋𝑗𝑗−�𝑝𝑝𝑗𝑗�𝑉𝑉�𝑐𝑐𝑗𝑗�−1

𝑗𝑗=−𝑚𝑚  (5-16) 

The probability of making the decision of charging (𝑝𝑝𝑐𝑐) is calculated as follows: 

𝑝𝑝𝑐𝑐 = 𝑒𝑒𝑈𝑈1

𝑒𝑒𝑈𝑈1+𝑒𝑒𝑈𝑈2
 (5-17) 

where  

𝑈𝑈1 is cumulative prospect value of charging the vehicle; and 

𝑈𝑈2 is cumulative prospect value of not charging the vehicle. 

Note that the charging probability 𝑝𝑝𝑐𝑐 is calculated based on the next charging 

opportunity. When making charging decisions BEV drivers may think beyond the next 

charging opportunity and consider the itinerary of the travel day to plan for charging. 

Therefore, the threshold probability of charging (𝑝𝑝𝑐𝑐) is determined based on the remaining 
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travel distance and the number of charging opportunities before arriving at the last 

destination at the end of the day, as shown in Equation 5-18. If 𝑝𝑝𝑐𝑐 is greater than 𝑝𝑝𝑐𝑐, the 

driver decides to charge; otherwise, the driver will not charge. 

𝑝𝑝𝑐𝑐 = 1

1+𝑒𝑒−𝜀𝜀
ℎ
𝑙𝑙
 (5-18) 

where 

ℎ is the number of later charging opportunities before arriving at the last destination of the 

day;  

𝑙𝑙 is the travel distance from the current stop to the last destination of the day (mile); and 

𝜀𝜀 is the scale parameter. 

Since the last destination of the day is usually home, ℎ
𝑙𝑙
 indicates the charging 

opportunities per mile before returning home. When the charger coverage in the remaining 

itinerary is high, the threshold probability 𝑝𝑝𝑐𝑐 is large and drivers are less likely to charge 

vehicles at the current stop. The scale parameter 𝜀𝜀 is used to adjust the impact of itinerary on 

the threshold probability, which is often seen in CPT applications (Jou and Chen, 2013; Lou 

and Cheng, 2016; Schwanen and Ettema, 2009; Zhang et al., 2018). 

The CPT parameters indicate different risk attitudes among individuals. The driver’s 

socioeconomic characteristics (e.g., income, gender, age, and education), BEV experience, 

charger familiarity, etc., have effects on the parameters. Calibration of these parameters is 

beyond the scope of this research. This research adopts the values calibrated by Tversky and 

Kahneman (1992): 𝛼𝛼 = 0.88, 𝛽𝛽 = 0.88, 𝜆𝜆 = 2.25, 𝛾𝛾 = 0.61, and 𝛿𝛿 = 0.69 in the following 

analysis. In addition, sensitivity analyses are conducted to examine the impact of the 

parameters on charging behavior. 
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5.3. BEV Mass-market Scenario based on 2017 National Household Travel Survey 

This study builds a BEV mass-market scenario based on the 2017 National 

Household Travel Survey. The scenario shows how to examine charging behavior in the long 

term under a mature BEV market with factors such as high BEV penetration, long range, and 

adequate charging infrastructure with more fast chargers available. 

5.3.1. BEVs in 2017 NHTS 

The 2017 NHTS is an inventory of the U.S. residents’ travel behavior during a travel 

day, including trips made by all modes of transportation (U.S. DOT, FHWA, 2017). The 

VEHICLE file of the NHTS consists of 242,160 passenger vehicles (i.e., cars, SUVs, vans, or 

pickup trucks) owned by the respondents. The 2017 NHTS introduced a new field—HFUEL 

in the VEHICLE file—to indicate the type of powertrain. For example, HFUEL = 3 means 

that the vehicle is a BEV. There are 607 BEVs in the raw data. However, some respondents 

mistakenly reported their plug-in hybrid electric vehicles (PHEV), such as the Chevrolet 

Volt, Ford Fusion Hybrid, and Toyota Camry Hybrid, as BEVs. After removing these 

PHEVs, there are 392 BEVs remaining, as listed in Table 5.1. The BEV market penetration is 

a mere 0.16%. This survey showed that the Nissan Leaf (182 in total) and Tesla are the most 

popular models among BEV drivers in the U.S. The ranges of most BEV models are less than 

100 miles.  

The average travel distance during the travel day of non-Tesla BEVs (𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵) is 28.1 

miles, while the average travel distance of gasoline vehicles (𝜇𝜇𝐺𝐺𝐵𝐵) is 34.7 miles. We compare 

the two means using the t-test. The alternative hypothesis is that the non-Tesla BEVs have a 

shorter average travel distance than gasoline vehicles; that is  𝐻𝐻𝑎𝑎: 𝜇𝜇𝐵𝐵𝐵𝐵𝐵𝐵 < 𝜇𝜇𝐺𝐺𝐵𝐵. The t-test 

shows that the p-value is 0, indicating the BEVs’ average daily travel distance is significantly 

shorter than that of gasoline vehicles. The average travel distance of Teslas (𝜇𝜇𝑇𝑇𝑒𝑒𝑠𝑠𝑙𝑙𝑎𝑎) is 41.2 
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mile. A t-test is conducted with the alternative hypothesis of 𝐻𝐻𝑎𝑎: 𝜇𝜇𝑇𝑇𝑒𝑒𝑠𝑠𝑙𝑙𝑎𝑎 > 𝜇𝜇𝐺𝐺𝐵𝐵. The test 

shows that the Teslas’ average daily travel distance is not significantly longer than gasoline 

vehicles (p-value is 0.0802). Since the BEV samples in the 2017 NHTS are inappropriate for 

studying charging behavior in a mature market, we constructed a BEV mass-market scenario 

using the 2017 NHTS with the assumption that some gasoline vehicles will be replaced by 

BEVs without changing their current travel patterns. 

Table 5.1  BEVs in 2017 NHTS. 

BEV make and model Number of vehicles EPA rated range (in miles) 
Tesla 121 249* 
2013/14/15 Nissan LEAF 117 84 
2011/12 Nissan LEAF 45 73 
Fiat 500e 27 87 
2016/17 Nissan LEAF 20 107 
Chevrolet Spark EV 17 82 
Volkswagen e-Golf 14 83 
Smart Fortwo electric drive 11 68 
Ford Focus Electric 6 76 
Toyota RAV4 EV 5 103 
Kia Soul EV 5 93 
Honda Fit EV 3 82 
BMW ActiveE 1 94 

*The model of Tesla is not available. Use 249 miles in this chapter. 

5.3.2. Vehicle Travel Activities 

The TRIP file of the 2017 NHTS recorded the trips of each person in the household 

during a travel day. The following filtering criteria were applied to select the personally 

operated vehicle (POV) trips on the travel day. 

• TRPTRANS = 3, 4, 5, or 6 (the POV is a car, SUV, van, or a pickup truck); 

• DRVR_FLG = 1 (identical POV trips are counted once). 

The trip characteristics are listed in Table 5.2. The dwell time at a destination is 

derived from the time intervals between two continuous trips. After removing vehicles with 
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incorrect or missing fields, there are 153,776 vehicles left. Based on the trip and dwell 

characteristics, we can determine the vehicle travel activities during the day, as illustrated in 

Figure 5.4. 

Table 5.2  Selected trip characteristic fields from the TRIP file. 

Field Description 
HOUSEID Household identifier. 
VEHID Vehicle identifier. 
STRTTIME Trip start time. 
ENDTIME Trip end time. 
WHYFROM Trip origin. Convert the values of 1 or 2 to ‘home’, 3 or 4 to ‘work’, and ≥5 to 

‘public’. 
WHYTRP1S Trip destination. Convert the values of 1 to ‘home’, 10 to ‘work’, and ≥20 as 

‘public’. 
VMT_MILE Trip distance for POV trips (mile). 
DWELTIME Time spent at the destination. 

 

 

Figure 5.4  Travel activities of a sample vehicle during the day. 

5.3.3. Charger Network Coverage and Charger Power 

Wide BEV adoption is constrained by insufficient charger network coverage and low-

speed chargers. Charger network coverage can be represented by the probability that a 

charger is available at the destination (Dong and Lin, 2012; Kontou et al., 2019). If a charger 

is available, BEV drivers may take advantage of the dwell time at the destination to charge 
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their vehicles without interfering with their travel plans (Dong et al., 2014; Hu et al., 2018). 

In this study, charger availability (𝑋𝑋) is drawn from a Bernoulli distribution with probability 

𝑝𝑝𝑎𝑎. 𝑋𝑋 = 1 that means a charger is available; otherwise, 𝑋𝑋 = 0. 

Pr(𝑋𝑋 = 1) = 1 − Pr(𝑋𝑋 = 0) = 𝑝𝑝𝑎𝑎,   0 ≤ 𝑝𝑝𝑎𝑎 ≤ 1 (5-19) 

Homes, workplaces, and public locations offer different probabilities of having 

available chargers. For example, in Figure 5.4, this vehicle has charging opportunities at 

home, the workplace, and the grocery store. At each charger site, we calculate the travel 

distance to the next charging opportunity and apply the CPT model to determine the driver’s 

charging decision. 

Charger power also varies at different charging locations. Regular residential chargers 

are Level 2 of 3.3 kW and some are Level 2 of 6.6 kW (Francfort, 2015). The power of Level 

2 chargers could increase to 19.2 kW (SAE, 2016). Direct current (DC) fast chargers of 50 

kW have been introduced to the market and are gaining popularity (Saxton, 2013). The EV 

Project showed that current BEV drivers use AC Level 2 chargers (3.3 kW and 6.6 kW) most 

frequently (83% of all charging events), while 11% of charges are being performed using DC 

fast chargers (Smart and Scoffield, 2014). This study considers Level 2 chargers with higher 

power and DC fast chargers in the mass-market scenario. 

5.3.4. The BEV Mass-market Scenario 

The Market Acceptance of Advanced Automotive Technologies (MA3T) model 

developed by Oak Ridge National Laboratory is a simulation tool for the U.S. vehicle market 

(Lin, 2014; Lin and Greene, 2011; Xie and Lin, 2017). MA3T uses a nested multinomial 

logit model to predict customer acceptance of advanced vehicle technologies, including 

BEVs. Under the “Developed” scenario that supposes a further expansion of charging 
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infrastructure with higher power, the model predicts that by 2030 the BEV market share is 

17%, among which 58.7% are BEVs with a 100-mi range (BEV-100), 41.1% are BEV-200, 

and 0.3% are BEV-300 (Xie et al., 2018). 

Accordingly, we selected 242,160×17% = 43,540 vehicles from the 2017 NHTS as 

the BEV samples to build the mass-market scenario. The average weight is 869 (U.S. DOT, 

FHWA, 2017), indicating that a vehicle sample in the NHTS can represent 869 vehicles 

nationwide. Thus, the selected 43,540 vehicles can represent 37,836,260 BEVs in the 

country. The BEV range is assumed to be 100, 200, or 300 miles, and the shares are in 

accordance with the MA3T model predictions. Moreover, in the mass-market scenario there 

is an adequate charging infrastructure with more fast chargers available. It is assumed that 

BEV drivers all install chargers at home and out-of-home charging coverage is 0.5 at 

workplaces and in public locations (Tehrani et al., 2013). The scenario parameters are listed 

in Table 5.3. 

Table 5.3  Parameters of BEV mass-market scenario. 

Parameter Value 
BEV range (mile) 100, 200, or 300 
Home charger network coverage 1.0 
Work charger network coverage 0.5 
Public charger network coverage 0.5 
Home charger power (kW) 6.6 
Work charger power (kW) 19.2 
Public charger power (kW) 50 
BEV market share 17% 

 

The EV Project showed that the SOC is nearly always above 78% at the end of 

overnight home charging for Nissan Leaf drivers (Smart and Schey, 2012). Nissan also offers 

the option of stopping the charging once the SOC reaches 80% to preserve battery life when 
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full range charging is not necessary (Nissan, 2011). Since over 90% of vehicles in the 2017 

NHTS started their travel day at home, this research assumes the battery SOC at the 

beginning of the first trip during the day is uniformly distributed between 78% and 100%. 

5.3.5. Simulation 

This study simulates the BEV mass-market scenario using the TRIP data in the 2017 

NHTS and the CPT charging behavior model. For each sampled BEV, we first determined its 

travel activities during the day using the data fields listed in Table 2, including trip origin and 

destination, trip start time and end time, trip distance, and dwell time at the destination. As 

illustrated in Figure 4, a BEV travels 6 times that day and has 3 charging opportunities at 

work, in public (grocery store), and at home. When the driver arrives at the workplace, the 

BEV’s remaining range 𝑟𝑟𝑐𝑐 is updated, and the dwell time at the workplace 𝑑𝑑𝑎𝑎 can potentially 

be used for charging with an increase of 𝑟𝑟𝑖𝑖 miles. The travel distance to the next public 

charging opportunity (grocery store) 𝑜𝑜 is the total distance of trips 2, 3, and 4. With these 

travel data as inputs, we apply the CPT charging behavior model to determine the driver’s 

charging decision. If the driver decides to charge, the BEV’s remaining range is updated 

when the charging session ends. By aggregating the individual’s charging decisions, the 

collective effects of nationwide BEV charging under the mass-market scenario can be 

examined. When running the simulation, we have adjusted the dollar values of different years 

in the CPT model to the values of 2017 based on the inflation rates published by the U.S. 

Department of Labor (2019). 
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5.4. Results 

5.4.1. Charging Behavior under the Mass-market Scenario 

5.4.1.1. Battery SOC at the start of charging events 

The battery SOC at which BEV drivers decide to charge is an important aspect of 

charging behavior. On one hand, drivers may want to charge at a higher SOC to avoid range 

anxiety; on the other hand, drivers may think charging is not worth the hassle. Therefore, 

BEV drivers charge their vehicles at a wide range of starting SOC levels. The EV Project 

showed that the majority of charging events started with a 20~80% SOC and the most 

frequent starting SOC levels are within 50~60% (Smart and Schey, 2012). Zou et al. (2016) 

found that about three-quarters of the BEV taxi drivers in Beijing, China did not resort to 

charging until the SOC dropped below 50% and most charging events started with a 40~50% 

SOC.  

Figure 5.5 examines the distribution of battery SOC at the beginning of charging 

events under the mass-market scenario. On average, BEV drivers start charging at a 41% 

SOC. Most charge events start with a SOC between 40% and 50%. Seventy-three percent of 

all charge events occur when the SOC drops below 50%. BEV drivers do not often decide to 

charge at either very high or very low levels of SOC. Only 2.5% of charging events start with 

an 80% SOC or even higher, and only 7.5% of charging falls below the anxiety range of 20 

miles. Compared with the EV Project observations in which most charges occurred at 

50~60% SOC, drivers tend to charge at a lower SOC in the mass-market scenario. BEV 

drivers will be more confident with using the more of the battery range when the charging 

infrastructure is well established. 
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Figure 5.5  Distribution of battery SOC at the start of charging events. 

The battery SOC before charging varied by charger location. The average starting 

SOC levels at home, workplace, and public chargers are 40.6%, 47.8%, and 39.1%, 

respectively. The average SOC at workplace chargers is higher, mainly because the drivers 

have not traveled a long distance when they first arrive at the workplace in the morning. The 

initial SOC is slightly lower for home and public charging. This is due to the higher cost 

associated with using public chargers. 

5.4.1.2. Charge timing and location choices 

BEV drivers may charge vehicles at different times of the day in different places. 

Figure 5.6 shows that the amount of vehicles undergoing charging and the proportions of 

charging location usage fluctuate during the day. In the morning, fewer BEVs choose to 

recharge, because either the vehicles have not consumed enough electricity to need a charge 

or the vehicles are in use. In the afternoon, the number of vehicles being charged starts to 

rise. The increasing rate is especially dramatic from 3 to 6 p.m. when people typically return 

home from work or other places. The number of charging vehicles peaks at 6 to 7 p.m. 

The charging location also changes considerably during the day. From 6 to 9 a.m., 

over 60% of the charging vehicles are using workplace chargers. In the afternoon, the use of 
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public and home chargers rises and the workplace chargers are used less. The public chargers 

are mainly used in the daytime. The proportion of publicly charging vehicles is highest 

around noon, when drivers take advantage of lunchtime to recharge. Home chargers play the 

dominant role in BEV charging. Although the proportion of home charging drops 

dramatically in the morning, drivers prefer home charging during other times of the day, even 

if work and public chargers provide higher power. At night, almost all charging vehicles use 

home chargers. 

 

Figure 5.6  Number of vehicles in charging and the proportions by charging locations. 

5.4.1.3. Charging power demand 

Some of the concerns with mass adoption of BEVs relate to whether the current 

electrical grid capacity can accommodate the additional load (Green et al., 2011; Hardman et 

al., 2018; Liu, 2012; Moon et al., 2018). Figure 5.7 shows the charging power demand during 

the daytime and where the demand comes from. The load profile generally follows a trend 

similar to the number of charging vehicles during the day. In the morning, the power demand 

is the lowest and mainly comes from workplace chargers. Demand is at a moderate level 

from noon to 4 p.m. Note that during this time period, the power demand mainly comes from 

public chargers. Although home charging is more frequent than public charging, a 
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considerable share of the power demand during the daytime comes from public chargers. 

After working hours, since the majority of charging vehicles use home chargers, the load 

from home charging again accounts for the largest share. The load peak occurs between 5 

and 8 p.m. 

In summary, the three important characteristics of the BEV demands on charging 

power are (1) daytime load is higher than nighttime load; (2) daytime load mainly comes 

from workplace and public chargers, while nighttime load mainly comes from home 

chargers; and (3) the load contribution from workplace chargers peaks in the early morning, 

while the load contributed by public chargers peaks at noon. 

 

Figure 5.7  Charging power demand and the proportions by charging location. 

5.4.2. Impacts of Driver Risk Attitude on Charging Behavior 

The CPT model describes how people’s attitudes toward risk affect the decision-

making process. The parameters 𝛼𝛼 and 𝛽𝛽 in the value function (i.e., Equation 5-7) represent 

the risk preference of decision makers. Higher values of 𝛼𝛼 and 𝛽𝛽 indicate that decision 

makers have a greater degree of risk aversion; while lower values indicate a greater degree of 

risk seeking. 𝜆𝜆 is the loss aversion parameter. Lower values of 𝜆𝜆 represent the decreasing 

degree of sensitivity to losses over gains. 
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Figure 5.8 shows the impacts of risk preference parameters 𝛼𝛼 and 𝛽𝛽 on battery SOC 

at the start of charging and on the proportions of charges that begin with a 20-mile range (or 

less) remaining. Let 𝛼𝛼 = 𝛽𝛽, indicating the same risk preference for gains and losses 

(Schwanen and Ettema, 2009). By changing the values from 0.05 to 0.95, Figure 5.8 shows 

that drivers’ risk preferences have a significant impact on charging behavior. As 𝛼𝛼 and 𝛽𝛽 

increase, drivers become more risk averse, and the average starting SOC increases steadily. 

Meanwhile, the proportion of the charges with less than 20 miles SOC remaining decreases. 

The drivers who are more risk averse tend to charge vehicles at a higher SOC in order to 

avoid range anxiety. In contrast, when drivers are extreme risk seekers, the starting SOC (on 

average) is 33.4% and over 20% of all charges start with 20 miles or less remaining. 

  
(a) Impact on average SOC at the start of charging 

events 
(b) Impact on the proportion of the charges with 20-

mi range or less remaining 

Figure 5.8  Impacts of BEV drivers’ risk preference on charging behavior. 

𝜆𝜆 has relatively weaker impacts on charging behavior compared to 𝛼𝛼 and 𝛽𝛽 in the 

value function. In Figure 5.9, the values of 𝜆𝜆 vary from 1.25 to 5.75. Higher values of 𝜆𝜆  

indicate an increasing degree of sensitivity to losses. As BEV drivers become more sensitive 

to losses than gains, the drivers exhibit stronger range anxiety, and the average battery SOC 

at the start of charging increases slightly. In the meantime, the proportion of the charges with 

20 miles or less remaining is nearly unchanged. 
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(a) Impact on average starting SOC (b) Impact on the proportion of the charges with 20-

mi range or less remaining 

Figure 5.9  Impacts of BEV drivers’ loss aversion attitude on charging behavior. 

5.4.3. Impacts of Irrational Behavior on Charging Power Demand 

The CPT parameters 𝛼𝛼, 𝛽𝛽, 𝜆𝜆, 𝛾𝛾, and 𝛿𝛿 control the degree of irrationality of decision 

makers. If these parameters all equal 1, BEV drivers are assumed to be rational when making 

charging decisions; that is, the drivers are neither risk averse nor risk seeking, losses and 

gains are weighted the same, and unlikely and likely outcomes are weighted the same. Figure 

5.10 compares the charging power demand with the CPT model and the rational driver 

assumption. It is seen that the peak power demand with the rational driver assumption is 

underestimated by 4%. This could lead to insufficient expansion of grid capacity in the 

future. Figure 10 also compares the charging power demand if BEV drivers are highly risk 

averse (i.e., 𝛼𝛼, 𝛽𝛽 = 0.95) or highly risk seeking (i.e., 𝛼𝛼, 𝛽𝛽 = 0.05). The power demands of 

extremely risk-averse drivers are higher during evening peak hours than is shown in the CPT 

model, because these drivers are more worried about using up the battery range. By contrast, 

the strong risk-seeking drivers are less worried and tend to have lower charging demands. In 

summary, the CPT model, which captures the irrational behavior of BEV drivers, is more 

appropriate to guide grid capacity expansion choices. In addition, BEV drivers with different 

levels of irrationality have different effects on charging power demand. 



www.manaraa.com

88 

 

Figure 5.10  Charging power demand under the BEV mass-market scenario with drivers of 
different levels of irrationality. 

5.4.4. Impacts of Public Charger Network Coverage on Charging Behavior 

Public chargers provide charging opportunities when needed during the day. Higher 

public charger coverage also makes drivers more confident about accessing the greater range 

of charger potential (Nicholas and Tal, 2017). Figure 5.11 shows how public charger 

coverage affects charging location choices and power demand. It is seen that as the public 

charger coverage increases, drivers are more likely to use public chargers. About 20% of 

vehicles charge at public locations when the charger coverage exceeds 0.6. However, home 

charging still plays the dominant role and accounts for 63% of all charging events even if 

public charging opportunities are everywhere. 

The charging power demand from public chargers increases significantly with the 

expansion of public charger network. Under the mass-market scenario where public charger 

coverage is assumed as 0.5, 36% of power demand comes from public chargers. Just 20% of 

charges done at public locations could potentially account for up to 40% of total electricity 

demand. In addition, expanding the grid capacity for public chargers is necessary as fast 

chargers will have a greater impact on the grid. Currently, the largest share of the power 
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demand still comes from homes. Thus, providing enough grid capacity in residential areas 

and maintaining reliable home charging service are important to expanded BEV use. 

  
(a) Impact on charging location (b) Impact on charging power demand 

Figure 5.11  Impacts of public charger network coverage on charging location and 
charging power demand. 

5.4.5. Impacts of Time-of-use Electricity Rate 

The electricity price is assumed as constant in the previous sections. The time-of-use 

electricity rates, which vary with the changes in grid loads, have been implemented in some 

areas and will impact BEV drivers’ charging behavior. Cao et al. (2016) defined 11 a.m. to 2 

p.m. and 7 p.m. to 11 p.m. as the mid-peak period, 2 p.m. to 9 p.m. as the on-peak period, 

and 11 p.m. to 11 a.m. as the off-peak period. The on-peak rate is about 1.5 times of the mid-

peak rate; the mid-peak rate is about twice of the off-peak rate (Cao et al., 2012; Cao et al., 

2016; Crow, 2014). This TOU pricing is showed as the TOU 1 in Figure 5.12, where 𝑒𝑒𝑐𝑐 is 

used as the mid-peak electricity price. The TOU 2, which increases the on-peak rate and 

reduces the off-peak rate, is used to explore drivers’ response given a larger gap between on-

peak and off-peak rates. Moreover, TOU pricing could also be determined by the charging 

power demands of BEVs. In Figure 5.7, the day’s power demand is highest from 4 to 9 p.m. 
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and drops to the lowest level from 12 a.m. Thus, we can adjust TOU pricing accordingly, 

which might reduce additional peak demand. The TOU 3 and TOU 4 represent the pricing 

adjusted by the power demand of BEVs and have the same rates with the TOU 1 and TOU 2, 

respectively. 

To take advantage of the off-peak electricity price, delayed charging is allowed for 

vehicles that satisfy the conditions that (1) home is the last destination of the day and (2) 

vehicles can be fully charged before the next trip. The charging start time will be postponed 

until a period of cheaper charging cost arrives. When BEV drivers return home and make 

their charging decisions, the cheaper electricity cost may change their charging choice and 

the power demand profile. 

 

Figure 5.12  Time-of-use electricity rates (unit: $/kWh). 

Figure 5.13 compares the charging power demand with the constant rate and the four 

TOU rates under the BEV mass-market scenario. With TOU rates and delayed charging, the 

demand profiles become much flatter. The peak power demand decreases dramatically, 
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especially with the TOU 4 that cuts the peak demand at 6 to 7 p.m. by almost 50%. The 

evening peak loads shift to the off-peak period when the demand is very low with the 

constant rate. With more vehicles being fully charged overnight, the TOU-rate charging 

demand declines gradually until 7 a.m., but is still significantly higher than the constant-rate 

demand. Therefore, TOU rates with delayed charging help distribute the charging power 

demand more evenly throughout the day and have fewer negative impacts on the grid. 

By adjusting TOU pricing based on the charging demands of BEVs, TOU 3 and 4 are 

able to reduce peak demand by more than TOU 1 and 2 are. The TOU 2 and 4 options, with a 

larger gap between on-peak and off-peak rates, reduce peak demand slightly and shift more 

peak demand to off-peak hours than do TOU 1 and 3. Therefore, the negative impacts of 

charging on the grid could be mitigated by adjusting TOU pricing based on the constant-rate 

power demand of BEVs. 

Overall, cheaper charging costs may affect BEV drivers’ charging decisions. The 

TOU electricity rate with delayed charging dramatically shifts the peak charging power 

demand to off-peak hours, especially from midnight to early morning. 

 

Figure 5.13  Charging power demand under the BEV mass-market scenario with different 
electricity rates. 
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5.5. Conclusions and Discussions 

This chapter proposes a CPT-based modeling framework to describe the charging 

behavior of BEV drivers. The cost functions are introduced to convert the amount of range 

remaining at the next charger into the outcomes in the CPT model. BEV drivers decide to 

charge their vehicles according to the cumulative prospect values. Based on the 2017 NHTS, 

a BEV mass-market scenario is constructed to represent a mature BEV market in the long 

term—high market penetration of BEVs, long range, and extensive charging infrastructure. 

Under the mass-market scenario, this chapter applies the CPT model to study charging 

behavior and its collective effects on the power grid, including battery SOC at the start of 

charging events, charging timing and location, and charging power demand. In addition, 

sensitivity analyses with regard to the risk attitude parameters in the CPT model were 

conducted. Risk preference parameters 𝛼𝛼 and 𝛽𝛽 have significant impacts on charging 

behavior, while the loss aversion parameter 𝜆𝜆 does not. The results show that as BEV drivers 

display a higher degree of risk-seeking, they tend to charge vehicles at lower SOC levels and 

a higher proportion of charges start with less than 20 miles of remaining range. 

The key findings are as follows. On average, BEV drivers charge their vehicles at 

41% SOC. Most charges start with 40~50% SOC. Seventy-three percent of charging events 

start with less than 50% SOC and 7.5% engage in risky charging with less than 20 miles 

range remaining. BEV drivers are less likely to charge in the morning, and this type of 

charging mainly occurs at workplaces. The number of BEVs being charged and the 

electricity demand reach their peaks in the early evening. The public fast chargers contribute 

the most significant share of power demand during the daytime. During nighttime, the 

charging load mainly comes from home charging. Furthermore, we examine the collective 

effects of public charger network coverage on charging behavior and the power grid. Some 
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of the home charging shifts to charging at the workplace and public spots as the public 

charger network expands, but home charging still plays the dominant role in BEV charging 

and contributes the largest share to the power load. The power demand from the public 

chargers increases significantly with their expansion and has large effects on the grid. 

Finally, the TOU electricity rate and delayed charging greatly change the charging load 

profile under the BEV mass-market scenario. The peak charging power demands 

dramatically shift to off-peak hours from midnight to early morning. If we adjust the TOU 

pricing based on the charging demand under the constant rate, the charging loads could be 

distributed more evenly during the day and have fewer negative impacts on the grid. In 

addition, the proposed model can be used to provide insights to BEV use, charging 

infrastructure planning, and capacity expansion of the power grid.  

One limitation of this research is the lack of behavioral data for calibrating the CPT 

model parameters. The model uses the experimental parameters set by Tversky and 

Kahneman (1992). In practice, the model parameters could vary across individuals due to 

different personalities and risk attitudes. Parameter calibration could be done in the future 

when charging behavior data are collected from a mature BEV market. Another limitation 

stems from the assumptions made for the mass-market scenario. This research makes 

reasonable assumptions based on previous studies regarding BEV market penetration and 

charger coverage in a mature market. However, BEV adoption and charging infrastructure 

development might take place faster than predicted. 



www.manaraa.com

94 

CHAPTER 6.    CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH 

This dissertation conducts data-driven analyses to the potential problems of future 

electric personal mobility, including the feasibility of electric taxis, dispatch of electric and 

autonomous taxis, and charging behavior of personal BEV drivers.  

First, this dissertation studies the feasibility of BEVs based on the travel patterns of 

taxis. We extract ten variables from the trip data of the New York City yellow taxis to 

represent their spatial-temporal travel patterns in terms of driver-shift, travel demand and 

dwell, and examine the implications of these driving patterns on the BEV taxi feasibility. The 

BEV feasibility of a taxi is quantified as the percentage of occupied trips that can be 

completed by BEVs of a given driving range during a year. It is found that the currently 

deployed 280 public charging stations in New York City are far from sufficient to support a 

large BEV taxi fleet. However, adding merely 372 new charging stations at various locations 

where taxis frequently dwell can potentially make BEVs with 200- and 300-mile ranges 

feasible for more than half of the taxi fleet. The results also show that taxis with certain 

characteristics are more suitable for switching to BEV-200 or BEV-300, such as fewer daily 

shifts, fewer drivers assigned to the taxi, shorter daily driving distance, fewer daily dwells 

but longer dwelling time, and higher likelihood to dwell at the borough of Manhattan. This 

research contributes to the adoption of BEV taxis in the future. We can predict whether a 

gasoline taxi can be replaced by an electric taxi or not using their travel patterns, and the 

predictive model has high accuracy. 

This research of BEV taxi feasibility could be improved by following these 

directions. The travel distance, travel time and speed of unoccupied trips are estimated based 

on the data of occupied trips. We can formulate more accurate estimation models. The 



www.manaraa.com

95 

activity-based approach that quantifies the BEV taxi feasibility could take more realistic 

factors into account. For example, consider the driving distance to the nearest charging 

station during emergency charging, the travel distance from emergency charging station to 

the next customer, charging congestion due to limited public charging resources. Moreover, 

we must be cautious that the BEV taxi fleet can satisfy the same customer demand without 

following their original routes. The possible differences among the travel patterns of gasoline 

taxis and BEV taxis should be considered. This problem could be solved if trip data of real 

BEV taxis are collected in the future. 

Second, this dissertation explores the potential of replacing current taxis with electric 

autonomous vehicles in New York City. A simulation framework for the operations of EAV 

taxis is designed, in which EAV taxis are dispatched by the optimization-based model and 

the neural network-based model. The optimization dispatch model aims at maximizing total 

rewards of picking up customers. The data of optimal dispatch solutions are generated by 

simulating EAV taxis that are dispatched by the optimization model. The neural network 

model is trained using the dispatch data to learn the optimal dispatch strategies. Although the 

dispatch decisions made by the neural network model are not optimal, the model has very 

close performance with the optimization dispatch model in terms of customer service and 

taxi operational efficiency. In addition, the neural network dispatch model is much faster to 

run. By comparing with the current taxis, it is found that the EAV taxis dispatched by the 

neural network model can improve operational efficiency by reducing empty travel distance. 

EAV taxis can also reduce fleet size by 15% while maintaining comparable level of service 

with the current taxi fleet and traveling shorter distance. This research is among only a few 

studies in EAV taxi operation modeling and the use of neural network for EAV taxi 
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dispatching. Instead of solving mathematical problems each time when dispatching taxis to 

customers, the neural network-based model can be much more efficient and thus more 

appropriate for real-time application. 

We will extend this research by modeling EAV taxi charging and relocating. Instead 

of adopting deterministic charging rules, future research can schedule taxi charging ahead of 

time. EAV taxis will take advantage of more idle time for charging to prepare for serving in-

advance peak demand. In addition, a relocating model could move EAV taxis from low-

demand areas to high-demand areas and potentially save customers’ waiting time. Moreover, 

when more computation resources are available, the simulation framework can simulate a 

larger EAV taxi fleet and generate more dispatch solution data for training the neural 

network. 

Third, this dissertation proposes a cumulative prospect theory based modeling 

framework to describe the charging behavior of BEV drivers. CPT captures an individual’s 

attitude and preference toward risk in the decision-making process. A BEV mass-market 

scenario is constructed using the 2017 National Household Travel Survey data. By applying 

the CPT-based charging behavior model, the dissertation studies the battery state-of-charge 

when drivers decide to charge their vehicles, charging timing and location choices, and 

charging power demand profile under the mass-market scenario. In addition, sensitivity 

analyses are used to examine the drivers’ risk attitudes and public charger network coverage. 

BEV drivers who display a higher degree of risk-seeking tend to charge vehicles at a lower 

SOC. Some home charging shifts to workplace and public charging as the public charger 

network expands, but home charging still plays the most significant role in BEV use. The 

power demand from public chargers increases significantly with BEV expansion and has a 
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larger impact on the power grid. The time-of-use electricity rate can shift peak power 

demand to off-peak periods from midnight to early morning. This is the first research that 

models people’s irrational decisions in charging electric vehicles. This is also one of the early 

studies that use the most recent NHTS data and reflect the newest travel characteristics of 

American people. Understanding BEV drivers’ charging behavior will provide guidance to 

BEV use, charging infrastructure planning, and power grid capacity expansion. 

Calibration of CPT model parameters could be done in the future when charging 

behavior data are collected from a mature BEV market. With different model parameters for 

different individuals, this research will explore the impact of various personalities and risk 

attitudes on charging behavior. This research also makes several assumptions regarding BEV 

market penetration and charger coverage in a mature market. With the wider adoption of 

electric vehicles and charging infrastructure, some assumptions will need to be adjusted. 
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APPENDIX.   THE CPT-BASED CHARGING BAHAVIOR MODELING 
FRAMEWORK PARAMETERS 

Table A.1   The CPT-based charging behavior modeling framework parameters. 

Parameter Value Dollar year Source Adjusted value used in 
simulation 

𝑒𝑒𝑟𝑟  0.3 kWh/mile — U.S. EPA (2017) — 
𝑟𝑟𝑎𝑎  20 miles — Franke and Krems (2013) — 
𝑐𝑐ℎ  $0.45 for personal 

local travel; 
$0.85 for business 
local travel 

2016 U.S. DOT (2016); Dong 
and Lin (2012); Wu et al. 
(2015); Wu et al. (2014) 

$0.46 for personal 
local travel; 
$0.87 for business 
local travel 

𝑐𝑐𝑠𝑠  $5 2015 Francfort (2015) $5.14 
𝑒𝑒𝑐𝑐  $0.12/kWh 2017 U.S. EIA (2017) $0.12/kWh 
𝑐𝑐𝑝𝑝  $109 2016 Moor (2016) $111.29 
𝑐𝑐𝑐𝑐  $2.51/mile 2018 TaxiFareFinder (2018) $2.46/mile 
𝛼𝛼  0.88 — 

Tversky and Kahneman 
(1992) 

— 
𝛽𝛽  0.88 — — 
𝜆𝜆  2.25 — — 
𝛾𝛾  0.61 — — 
𝛿𝛿  0.69 — — 
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